Parallel Nonlinear Preconditioning Algorithms and Applications in Biomechanics

并行非线性预处理算法及其在生物力学中的应用

基本信息

  • 批准号:
    1720366
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Computer simulation of fluid-structure interaction problems has many applications in science and engineering, such as the vibration analysis of aircraft, automobiles, and suspension bridges. More recently, the technique has been extended to diagnosing and treatment planning of certain medical problems such as congenital and acquired cardiovascular diseases, and to the design and optimization of medical devices. Solving the fluid-structure interaction problems on supercomputers with a large number of processor cores is challenging because the mathematical model consists of a coupled complicated nonlinear system, and most existing algorithms and software for the solution of problems of this kind do not scale well beyond a few hundred processor cores. The principal investigator will develop highly scalable algorithms and software that are suitable for large scale supercomputers and applicable for different models of blood flows and material parameters for the arterial wall. Mature technologies are available for solving many types of linear problems, but for coupled, highly nonlinear multi-physics problems, robust and scalable techniques are badly needed, especially for implementation on large scale parallel computers. The technical focus of this project is a class of non-linearly preconditioned Newton methods that combines a nonlinear elimination technique with multilevel domain decomposition for parallelization. Through this research the principal investigator will solve non-linear difficult problems modeling a wide range of physical models with different levels of non-linearities. Algorithms that provide a high degree of parallelism will be designed so that large scale parallel computers can be used efficiently. The target application is a family of fluid-structure interaction problems in biomechanics. For the fluid model, both Newtonian and non-Newtonian models will be studied. For solid models, linear elasticity will be considered for small deformations, geometric nonlinear elasticity will be considered for large deformations, and hyper-elasticity will be considered for materially nonlinear problems. Two- and many-level versions of the algorithms will be investigated to obtain high scalability on parallel computers with a large number of processor cores. This research will have a great impact in areas of computational science and engineering where non-linear difficult problems need to be solved. The research is rich in opportunities for both graduate and undergraduate students interested in applications in biomechanics, parallel computing, and general computational science and engineering.
流体-结构相互作用问题的计算机模拟在科学和工程中有许多应用,例如飞机、汽车和悬索桥的振动分析。最近,该技术已扩展到某些医疗问题的诊断和治疗计划,如先天性和后天性心血管疾病,以及医疗设备的设计和优化。在具有大量处理器核的超级计算机上求解流固耦合问题是具有挑战性的,因为数学模型由耦合的复杂非线性系统组成,并且大多数用于解决此类问题的现有算法和软件不能扩展到超过几百个处理器核。主要研究者将开发高度可扩展的算法和软件,适用于大型超级计算机,并适用于动脉壁的不同血流模型和材料参数。 成熟的技术可用于解决许多类型的线性问题,但对于耦合的,高度非线性的多物理场问题,鲁棒性和可扩展的技术是迫切需要的,特别是对于大规模并行计算机上的实现。该项目的技术重点是一类非线性预处理牛顿方法,它结合了非线性消除技术和多级区域分解的并行化。通过这项研究,主要研究者将解决非线性难题,建立各种具有不同非线性程度的物理模型。提供高度并行性的算法将被设计为使得大规模并行计算机可以被有效地使用。 目标应用程序是生物力学中的一系列流体-结构相互作用问题。对于流体模型,将研究牛顿和非牛顿模型。对于实体模型,小变形将考虑线性弹性,大变形将考虑几何非线性弹性,材料非线性问题将考虑超弹性。两个和多个级别的版本的算法将进行调查,以获得高的可扩展性与大量的处理器内核的并行计算机。 这一研究将在需要解决非线性难题的计算科学和工程领域产生重大影响。这项研究为对生物力学、并行计算和一般计算科学与工程应用感兴趣的研究生和本科生提供了丰富的机会。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Nonlinear Elimination Preconditioned Inexact Newton Method for Heterogeneous Hyperelasticity
  • DOI:
    10.1137/18m1194936
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shihua Gong;X. Cai
  • 通讯作者:
    Shihua Gong;X. Cai
An efficient parallel simulation of unsteady blood flows in patient-specific pulmonary artery
A scalable nonlinear fluid-structure interaction solver based on a Schwarz preconditioner with isogeometric unstructured coarse spaces in 3D
  • DOI:
    10.1016/j.jcp.2017.03.043
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Kong;X. Cai
  • 通讯作者:
    F. Kong;X. Cai
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiao-Chuan Cai其他文献

A preconditioning method with the emGeneralized/em−emα/em time discretization for dynamic crack propagations based on XFEM
一种基于扩展有限元法(XFEM)的具有广义 -α时间离散的预处理方法用于动态裂纹扩展
  • DOI:
    10.1016/j.jcp.2025.113992
  • 发表时间:
    2025-07-15
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Xingding Chen;Xiao-Chuan Cai
  • 通讯作者:
    Xiao-Chuan Cai
Convergence rate estimate for a domain decomposition method
  • DOI:
    10.1007/bf01385503
  • 发表时间:
    1992-12-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Xiao-Chuan Cai;William D. Gropp;David E. Keyes
  • 通讯作者:
    David E. Keyes
Large eddy simulation of the wind flow in a realistic full-scale urban community with a scalable parallel algorithm
使用可扩展的并行算法对真实的全尺寸城市社区中的风流进行大涡模拟
  • DOI:
    10.1016/j.cpc.2021.108170
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Zhengzheng Yan;Rongliang Chen;Xiao-Chuan Cai
  • 通讯作者:
    Xiao-Chuan Cai
Simulating Flows Passing a Wind Turbine with a Fully Implicit Domain Decomposition Method
Scalable Domain Decomposition Algorithms for Simulation of Flows Passing Full Size Wind Turbine
用于模拟通过全尺寸风力涡轮机的流动的可扩展域分解算法

Xiao-Chuan Cai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiao-Chuan Cai', 18)}}的其他基金

AF: Small: Fully Implicit Methods for Partial Differential Equations and Software for Hybrid Architecture
AF:小:偏微分方程的完全隐式方法和混合架构软件
  • 批准号:
    1216314
  • 财政年份:
    2012
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Nonlinear Preconditioning Techniques for Coupled Multi-physics Problems on Massively Parallel Computers
大规模并行计算机上耦合多物理问题的非线性预处理技术
  • 批准号:
    0913089
  • 财政年份:
    2009
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
NOSS: An Integrated Power Aware Sensor-Simulation Network System for Long-Term Performance Assessment of Concrete Infrastructures
NOSS:用于混凝土基础设施长期性能评估的集成功率感知传感器模拟网络系统
  • 批准号:
    0722023
  • 财政年份:
    2007
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Nonlinear Domain Decomposition Methods and Software for Multicomponent Problems
多分量问题的非线性域分解方法和软件
  • 批准号:
    0634894
  • 财政年份:
    2006
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
ALGORITHMS: Scalable Solvers for Nonlinear Partial Differential Equations
算法:非线性偏微分方程的可扩展求解器
  • 批准号:
    0305666
  • 财政年份:
    2003
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
ITR/AP: A Live-Data Simulation with Application to Bridge Performance
ITR/AP:实时数据模拟及其应用以桥接性能
  • 批准号:
    0112930
  • 财政年份:
    2001
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Parallel Nonlinear Elimination Methods and Software for Partial Differential Equations
偏微分方程的并行非线性消元法和软件
  • 批准号:
    0072089
  • 财政年份:
    2000
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
NSF Young Investigator Award
NSF青年研究员奖
  • 批准号:
    9457534
  • 财政年份:
    1994
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
New Ways Forward for Nonlinear Structural Dynamics
非线性结构动力学的新方法
  • 批准号:
    EP/X040852/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Fellowship
Concentration Phenomena in Nonlinear PDEs and Elasto-plasticity Theory
非线性偏微分方程中的集中现象和弹塑性理论
  • 批准号:
    EP/Z000297/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Research Grant
CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
  • 批准号:
    2340762
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
  • 批准号:
    2400036
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Nonlinear Quantum Control Engineering
非线性量子控制工程
  • 批准号:
    DP240101494
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Projects
Quantum Algorithms for Nonlinear Differential Equations - QuANDiE
非线性微分方程的量子算法 - QuANDiE
  • 批准号:
    EP/Y004663/2
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Research Grant
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
  • 批准号:
    2338704
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了