Parallel Nonlinear Elimination Methods and Software for Partial Differential Equations

偏微分方程的并行非线性消元法和软件

基本信息

  • 批准号:
    0072089
  • 负责人:
  • 金额:
    $ 39.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-07-01 至 2004-06-30
  • 项目状态:
    已结题

项目摘要

Nonlinear Partial Differential Equations (PDEs) are the basic mathematical description for a wide variety of important application areas. In particular, this project will consider PDEs that arise in fluid dynamics, biology, and radiation diffusion. Because of their complexity, these equations can only be solved numerically by computers, and because of their particular properties (shock waves, sharp fronts, and local singularities) they are difficult to solve even then. This project will design, analyze, and implement software for a class of iterative methods to numerically solve nonlinear PDEs. The software will be provided in two forms - Matlab codes and a package interoperating with the PETSc library - for other researchers to apply the methods.Technically, the project will study a class of nonlinear elimination algorithms for solving algebraic nonlinear equations with unbalanced nonlinearities. The elimination methods avoid traditional methods' slow convergence when local singularities appear by identifying "misscaled" nonlinear components and replacing them with a function of the remaining more uniformly scaled components. The family of algorithms thus devised will obtain parallelism from domain decomposition, scalability (with respect to problem size) from multilevel methods, and robustness (against local singularities) from incomplete elimination. The methods will be tested on three important classes of applications: transonic compressible flows (CFD), electric wave problems in the heart (computational biology), and Marshak wave problems (radiation transport). The proposed algorithm and software development will have a great impact on the three applications, and will also have substantial influence on other areas of computational science where large nonlinear equations need to be solved.
非线性偏微分方程(PDE)是广泛的重要应用领域的基本数学描述。特别是,这个项目将考虑在流体动力学,生物学和辐射扩散中出现的偏微分方程。由于它们的复杂性,这些方程只能用计算机数值求解,而且由于它们的特殊性质(冲击波、尖锐的锋面和局部奇点),即使在计算机上也很难求解。本计画将设计、分析及实作软体,以应用于一类迭代法数值求解非线性偏微分方程。该软件将以两种形式提供-- Matlab代码和与PETSc库互操作的软件包--供其他研究人员应用这些方法。技术上,该项目将研究求解具有不平衡非线性的代数非线性方程组的一类非线性消元算法。消除方法避免了传统方法的收敛速度慢时,局部奇异性出现识别“尺度不当”的非线性分量,并取代它们与其余更均匀的比例分量的函数。因此,设计的算法家族将获得并行域分解,可扩展性(相对于问题的大小),从多级方法,和鲁棒性(对局部奇点),从不完全消除。这些方法将在三个重要的应用类别上进行测试:跨音速可压缩流(CFD),心脏电波问题(计算生物学)和Marshak波问题(辐射传输)。所提出的算法和软件开发将对这三个应用产生巨大的影响,也将对需要求解大型非线性方程的计算科学的其他领域产生实质性的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiao-Chuan Cai其他文献

A preconditioning method with the emGeneralized/em−emα/em time discretization for dynamic crack propagations based on XFEM
一种基于扩展有限元法(XFEM)的具有广义 -α时间离散的预处理方法用于动态裂纹扩展
  • DOI:
    10.1016/j.jcp.2025.113992
  • 发表时间:
    2025-07-15
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Xingding Chen;Xiao-Chuan Cai
  • 通讯作者:
    Xiao-Chuan Cai
Convergence rate estimate for a domain decomposition method
  • DOI:
    10.1007/bf01385503
  • 发表时间:
    1992-12-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Xiao-Chuan Cai;William D. Gropp;David E. Keyes
  • 通讯作者:
    David E. Keyes
Large eddy simulation of the wind flow in a realistic full-scale urban community with a scalable parallel algorithm
使用可扩展的并行算法对真实的全尺寸城市社区中的风流进行大涡模拟
  • DOI:
    10.1016/j.cpc.2021.108170
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Zhengzheng Yan;Rongliang Chen;Xiao-Chuan Cai
  • 通讯作者:
    Xiao-Chuan Cai
Simulating Flows Passing a Wind Turbine with a Fully Implicit Domain Decomposition Method
Scalable Domain Decomposition Algorithms for Simulation of Flows Passing Full Size Wind Turbine
用于模拟通过全尺寸风力涡轮机的流动的可扩展域分解算法

Xiao-Chuan Cai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiao-Chuan Cai', 18)}}的其他基金

Parallel Nonlinear Preconditioning Algorithms and Applications in Biomechanics
并行非线性预处理算法及其在生物力学中的应用
  • 批准号:
    1720366
  • 财政年份:
    2017
  • 资助金额:
    $ 39.31万
  • 项目类别:
    Standard Grant
AF: Small: Fully Implicit Methods for Partial Differential Equations and Software for Hybrid Architecture
AF:小:偏微分方程的完全隐式方法和混合架构软件
  • 批准号:
    1216314
  • 财政年份:
    2012
  • 资助金额:
    $ 39.31万
  • 项目类别:
    Standard Grant
Nonlinear Preconditioning Techniques for Coupled Multi-physics Problems on Massively Parallel Computers
大规模并行计算机上耦合多物理问题的非线性预处理技术
  • 批准号:
    0913089
  • 财政年份:
    2009
  • 资助金额:
    $ 39.31万
  • 项目类别:
    Standard Grant
NOSS: An Integrated Power Aware Sensor-Simulation Network System for Long-Term Performance Assessment of Concrete Infrastructures
NOSS:用于混凝土基础设施长期性能评估的集成功率感知传感器模拟网络系统
  • 批准号:
    0722023
  • 财政年份:
    2007
  • 资助金额:
    $ 39.31万
  • 项目类别:
    Continuing Grant
Nonlinear Domain Decomposition Methods and Software for Multicomponent Problems
多分量问题的非线性域分解方法和软件
  • 批准号:
    0634894
  • 财政年份:
    2006
  • 资助金额:
    $ 39.31万
  • 项目类别:
    Standard Grant
ALGORITHMS: Scalable Solvers for Nonlinear Partial Differential Equations
算法:非线性偏微分方程的可扩展求解器
  • 批准号:
    0305666
  • 财政年份:
    2003
  • 资助金额:
    $ 39.31万
  • 项目类别:
    Continuing Grant
ITR/AP: A Live-Data Simulation with Application to Bridge Performance
ITR/AP:实时数据模拟及其应用以桥接性能
  • 批准号:
    0112930
  • 财政年份:
    2001
  • 资助金额:
    $ 39.31万
  • 项目类别:
    Standard Grant
NSF Young Investigator Award
NSF青年研究员奖
  • 批准号:
    9457534
  • 财政年份:
    1994
  • 资助金额:
    $ 39.31万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 39.31万
  • 项目类别:
    Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 39.31万
  • 项目类别:
    Standard Grant
New Ways Forward for Nonlinear Structural Dynamics
非线性结构动力学的新方法
  • 批准号:
    EP/X040852/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.31万
  • 项目类别:
    Fellowship
Concentration Phenomena in Nonlinear PDEs and Elasto-plasticity Theory
非线性偏微分方程中的集中现象和弹塑性理论
  • 批准号:
    EP/Z000297/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.31万
  • 项目类别:
    Research Grant
CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
  • 批准号:
    2340762
  • 财政年份:
    2024
  • 资助金额:
    $ 39.31万
  • 项目类别:
    Continuing Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
  • 批准号:
    2400036
  • 财政年份:
    2024
  • 资助金额:
    $ 39.31万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 39.31万
  • 项目类别:
    Standard Grant
Nonlinear Quantum Control Engineering
非线性量子控制工程
  • 批准号:
    DP240101494
  • 财政年份:
    2024
  • 资助金额:
    $ 39.31万
  • 项目类别:
    Discovery Projects
Quantum Algorithms for Nonlinear Differential Equations - QuANDiE
非线性微分方程的量子算法 - QuANDiE
  • 批准号:
    EP/Y004663/2
  • 财政年份:
    2024
  • 资助金额:
    $ 39.31万
  • 项目类别:
    Research Grant
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
  • 批准号:
    2338704
  • 财政年份:
    2024
  • 资助金额:
    $ 39.31万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了