Collaborative Research: Numerical Methods for Fully and Implicitly Nonlinear Equations
合作研究:完全隐式非线性方程的数值方法
基本信息
- 批准号:0914021
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main goal of this project is to further investigate the numerical solution of fully nonlinear elliptic equations such as Monge-Ampère?s, in order to extend previous work done with the support of NSF Grant DMS-0412267. The main findings of these previous investigations are that, after regularization of the data (which is not always necessary), well-chosen least-squares formulations in appropriate Hilbert spaces lead to robust solution methods able to compute classical solutions, or generalized ones if classical solutions do not exist. The objectives of the present project are: (i) To improve the performances of the iterative methods used to solve the least-squares problems. This will require the development of novel algorithms to solve the many (one per grid point) low dimensional nonlinear eigenvalue problems obtained from the decomposition of the least squares problems, since this results in a number of small but intricate constrained eigenvalue problems. (ii) To demonstrate the effectiveness of these new algorithms on a variety of test problems (Monge-Ampère, Pucci, Gaussian curvature, sigma-2, in dimension 2, 3, and even 4 for the Pucci problem, using parallelization). (iii) To determine whether the remarkable homogenization properties observed in two-dimensions for some of these fully nonlinear elliptic equations when a coefficient in the operator varies periodically or randomly in space persist in higher dimensions. (iv) To apply, ultimately, the above methodology (or close variant of it) to the solution of some implicitly nonlinear partial differential equations from non-smooth differential geometry that model folding phenomena. What motivates these investigations is the fact that fully nonlinear elliptic equations play an important role in areas as diverse as material sciences, nonlinear elasticity, fluid mechanics, atmospheric sciences, nonlinear elasticity, shape design in electrical and structural engineering (antennas, car shape,?), finance, applied and theoretical physics, differential geometry and others. The related mathematical problems have generated a large literature. In contrast these problems have the reputation to be difficult from a computational standpoint explaining why the computational and applied mathematicians have not made significant progress on their numerical solution. One of the goals of this project is to close the gap between the various communities concerned with fully nonlinear elliptic equations so that each of them will learn from the others, setting an example of interdisciplinary science. Such an effort will also benefit science and engineering professionals and students, via publications, dedicated web sites and post-graduate courses, lectures at conferences, and of course direct involvement for some graduate students. It will also stimulate the contributions of other scientists to these important areas. Since computational methods developed previously by the Principal Investigators and their associates are currently used in many areas of Science and Engineering, Academia and Industry, one can expect a similar endeavor for the results and products originating from this collaborative project.
该项目的主要目标是进一步研究完全非线性椭圆型方程的数值解,如Monge-Ampère?s,以扩展以前的工作与NSF资助DMS-0412267的支持下完成。这些以前的调查的主要结果是,在正则化的数据(这并不总是必要的),精心选择的最小二乘配方在适当的希尔伯特空间导致强大的解决方案的方法能够计算经典的解决方案,或广义的,如果经典的解决方案不存在。本项目的目标是:(i)提高用于解决最小二乘问题的迭代方法的性能。这将需要开发新的算法来解决从最小二乘问题的分解获得的许多(每个网格点一个)低维非线性本征值问题,因为这会导致一些小而复杂的约束本征值问题。(ii)为了证明这些新算法在各种测试问题上的有效性(Monge-Ampère、Pucci、高斯曲率、sigma-2,对于Pucci问题,在2维、3维甚至4维中,使用并行化)。(iii)为了确定是否显着的均匀化性质观察到在二维的一些这些完全非线性椭圆方程时,在运营商的系数在空间中周期性或随机变化持续在更高的维度。(iv)最终,将上述方法(或其近似变体)应用于求解来自非光滑微分几何的一些隐式非线性偏微分方程,这些方程模拟了折叠现象。激发这些研究的是这样一个事实,即完全非线性椭圆方程在材料科学、非线性弹性、流体力学、大气科学、非线性弹性、电气和结构工程中的形状设计(天线、汽车形状)、金融,应用和理论物理,微分几何和其他。相关的数学问题已经产生了大量的文献。相比之下,这些问题的声誉是很难从计算的角度来解释为什么计算和应用数学家没有取得重大进展,他们的数值解。该项目的目标之一是缩小与完全非线性椭圆方程有关的各个社区之间的差距,以便每个社区都能相互学习,树立跨学科科学的榜样。这样的努力也将有利于科学和工程专业人员和学生,通过出版物,专门的网站和研究生课程,在会议上讲座,当然,一些研究生的直接参与。它还将激励其他科学家对这些重要领域作出贡献。由于主要研究人员及其同事以前开发的计算方法目前已用于科学和工程,学术界和工业的许多领域,因此可以预期该合作项目的结果和产品也会有类似的奋进。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Danny Sorensen其他文献
Danny Sorensen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Danny Sorensen', 18)}}的其他基金
AF:Small: Data-Driven Dimension Reduction of Linear and Nonlinear Systems
AF:Small:数据驱动的线性和非线性系统降维
- 批准号:
1320866 - 财政年份:2013
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
AF: Small: Interpolatory Methods for Dimension Reduction of Parametric and Nonlinear Dynamical Systems
AF:小:参数和非线性动力系统降维的插值方法
- 批准号:
1017401 - 财政年份:2010
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Advanced Projection Techniques for Dimension Reduction of Large Scale Dynamical Systems
用于大规模动力系统降维的先进投影技术
- 批准号:
0634902 - 财政年份:2006
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Model Reduction for Structured Dynamical Systems
结构化动力系统的模型简化
- 批准号:
0306503 - 财政年份:2003
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
ITR/AP: Collaborative Research: Model Reduction of Dynamical Systems for Real-time Control
ITR/AP:协作研究:用于实时控制的动态系统模型简化
- 批准号:
0325081 - 财政年份:2003
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
ITR: Reduced Basis Methodologies for Computation, Analysis and Visualization of Bio-Molecular Simulations
ITR:生物分子模拟计算、分析和可视化的简化基础方法
- 批准号:
0082645 - 财政年份:2000
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Projection Methods for Balanced Model Reduction
平衡模型缩减的投影方法
- 批准号:
9988393 - 财政年份:2000
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Reactive Scattering Codes for Massively Parallel Architecture Supercomputers
大规模并行架构超级计算机的反应散射码
- 批准号:
9408795 - 财政年份:1995
- 资助金额:
$ 12万 - 项目类别:
Continuing grant
Reactive Scattering Codes for MIMD Architecture Supercomputers
MIMD 架构超级计算机的反应散射码
- 批准号:
9113693 - 财政年份:1991
- 资助金额:
$ 12万 - 项目类别:
Continuing grant
Mathematical Sciences: Workshop on Asymptotic Analysis and the Numerical Solution of Nonlinear Differential Equations
数学科学:渐近分析和非线性微分方程数值解研讨会
- 批准号:
8903276 - 财政年份:1989
- 资助金额:
$ 12万 - 项目类别:
Interagency Agreement
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: WoU-MMA: Understanding the Physics and Electromagnetic Counterparts of Neutrino Blazars with Numerical Simulations
合作研究:WoU-MMA:通过数值模拟了解中微子耀变体的物理和电磁对应物
- 批准号:
2308090 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
- 批准号:
2319535 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
- 批准号:
2244696 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309547 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
- 批准号:
2325195 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
- 批准号:
2309748 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
- 批准号:
2319536 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Probing internal gravity wave dynamics and dissipation using global observations and numerical simulations
合作研究:利用全球观测和数值模拟探测内部重力波动力学和耗散
- 批准号:
2319142 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308680 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308679 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant