Model Reduction for Structured Dynamical Systems

结构化动力系统的模型简化

基本信息

  • 批准号:
    0306503
  • 负责人:
  • 金额:
    $ 43.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-08-15 至 2007-07-31
  • 项目状态:
    已结题

项目摘要

This project is concerned with the investigation of five specific topics in model reduction. (a) Decay rates of certain system related singular values (Hankel singular values and others related to approximation error bounds); (b) Model reduction for passive systems; (c) Convergence of Krylov-like projection algorithms for model reduction and the establishment of error bounds for such methods; (d) Reduction methods for periodically time-varying systems, and (e) Structure preserving reduction methods for second order dynamical systems.Model reduction seeks to replace a large-scale system of differential or difference equations by a system of substantially lower dimension, that ideally, has the same response characteristics as the original system, yet requires far less computational resources for realization. Such large-scale systems arise in circuit simulation; they also arise through spatial discretization of certain time dependent PDE control systems and in many other applications. For example, an important step in chip manufacturing is the physical verification step, where a detailed simulation, modeling all constituent components of the chip must be carried out to check its behavior. Full simulation is out of the question due to computational complexity. Simulation based upon a reduced model is required to complete the computation in a reasonable period of time. However, it is essential that accuracy of the results is sufficient and that salient physical properties of the chip are faithfully preserved with the reduced model. This research is focused on the development, analysis, and implementation of reduction methods for very large problems. Where needed, the work will involve extending the underlying theory of dimension reduction, particularly for control problems. The primary goal is to provide reliable and efficient dimension reduction methods that preserve structure and system properties with rigorously established bounds on approximation error.
本计画主要探讨模型降阶中的五个特定主题。(a)某些系统相关奇异值的衰减率(B)无源系统的模型降阶;(c)模型降阶的Krylov类投影算法的收敛性和这种方法的误差界的建立;(d)周期性时变系统的归约方法,以及(e)二阶动力系统的结构保持降阶方法。模型降阶寻求用基本上更低维度的系统来替换大规模的微分或差分方程系统,理想地,具有与原始系统相同的响应特性,但需要少得多的计算资源来实现。这样的大规模系统出现在电路仿真中,它们也出现在某些时间相关的PDE控制系统的空间离散化和许多其他应用中。例如,芯片制造中的一个重要步骤是物理验证步骤,其中必须执行详细的仿真,对芯片的所有组成部件进行建模,以检查其行为。由于计算复杂性,完全模拟是不可能的。为了在合理的时间内完成计算,需要在简化模型的基础上进行仿真。然而,重要的是,结果的准确性是足够的,并且芯片的显著物理特性被忠实地保留在简化模型中。这项研究的重点是非常大的问题的减少方法的开发,分析和实施。在需要的地方,工作将涉及扩展基本的降维理论,特别是控制问题。其主要目标是提供可靠和有效的降维方法,保持结构和系统的性质与严格建立的近似误差的界限。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Danny Sorensen其他文献

Danny Sorensen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Danny Sorensen', 18)}}的其他基金

AF:Small: Data-Driven Dimension Reduction of Linear and Nonlinear Systems
AF:Small:数据驱动的线性和非线性系统降维
  • 批准号:
    1320866
  • 财政年份:
    2013
  • 资助金额:
    $ 43.66万
  • 项目类别:
    Standard Grant
AF: Small: Interpolatory Methods for Dimension Reduction of Parametric and Nonlinear Dynamical Systems
AF:小:参数和非线性动力系统降维的插值方法
  • 批准号:
    1017401
  • 财政年份:
    2010
  • 资助金额:
    $ 43.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Numerical Methods for Fully and Implicitly Nonlinear Equations
合作研究:完全隐式非线性方程的数值方法
  • 批准号:
    0914021
  • 财政年份:
    2009
  • 资助金额:
    $ 43.66万
  • 项目类别:
    Standard Grant
Advanced Projection Techniques for Dimension Reduction of Large Scale Dynamical Systems
用于大规模动力系统降维的先进投影技术
  • 批准号:
    0634902
  • 财政年份:
    2006
  • 资助金额:
    $ 43.66万
  • 项目类别:
    Standard Grant
ITR/AP: Collaborative Research: Model Reduction of Dynamical Systems for Real-time Control
ITR/AP:协作研究:用于实时控制的动态系统模型简化
  • 批准号:
    0325081
  • 财政年份:
    2003
  • 资助金额:
    $ 43.66万
  • 项目类别:
    Continuing Grant
ITR: Reduced Basis Methodologies for Computation, Analysis and Visualization of Bio-Molecular Simulations
ITR:生物分子模拟计算、分析和可视化的简化基础方法
  • 批准号:
    0082645
  • 财政年份:
    2000
  • 资助金额:
    $ 43.66万
  • 项目类别:
    Continuing Grant
Projection Methods for Balanced Model Reduction
平衡模型缩减的投影方法
  • 批准号:
    9988393
  • 财政年份:
    2000
  • 资助金额:
    $ 43.66万
  • 项目类别:
    Standard Grant
Reactive Scattering Codes for Massively Parallel Architecture Supercomputers
大规模并行架构超级计算机的反应散射码
  • 批准号:
    9408795
  • 财政年份:
    1995
  • 资助金额:
    $ 43.66万
  • 项目类别:
    Continuing grant
Reactive Scattering Codes for MIMD Architecture Supercomputers
MIMD 架构超级计算机的反应散射码
  • 批准号:
    9113693
  • 财政年份:
    1991
  • 资助金额:
    $ 43.66万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Workshop on Asymptotic Analysis and the Numerical Solution of Nonlinear Differential Equations
数学科学:渐近分析和非线性微分方程数值解研讨会
  • 批准号:
    8903276
  • 财政年份:
    1989
  • 资助金额:
    $ 43.66万
  • 项目类别:
    Interagency Agreement

相似国自然基金

兼捕减少装置(Bycatch Reduction Devices, BRD)对拖网网囊系统水动力及渔获性能的调控机制
  • 批准号:
    32373187
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Experimental Assessment of Drag Reduction Associated with Structured Surfaces
与结构化表面相关的减阻实验评估
  • 批准号:
    574531-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 43.66万
  • 项目类别:
    University Undergraduate Student Research Awards
Reduction of residual stresses in CVD diamond layers on steel parts through creation of hierarchically structured surface topographies by applying cutting processes
通过应用切割工艺创建分层结构的表面形貌,减少钢部件上 CVD 金刚石层的残余应力
  • 批准号:
    407169265
  • 财政年份:
    2018
  • 资助金额:
    $ 43.66万
  • 项目类别:
    Research Grants
Collaborative Research: A Tensor-Based Computational Framework for Model Reduction and Structured Matrices
协作研究:基于张量的模型简化和结构化矩阵计算框架
  • 批准号:
    1821149
  • 财政年份:
    2018
  • 资助金额:
    $ 43.66万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Tensor-Based Computational Framework for Model Reduction and Structured Matrices
协作研究:基于张量的模型简化和结构化矩阵计算框架
  • 批准号:
    1821148
  • 财政年份:
    2018
  • 资助金额:
    $ 43.66万
  • 项目类别:
    Continuing Grant
AitF: Collaborative Research: A Framework of Simultaneous Acceleration and Storage Reduction on Deep Neural Networks Using Structured Matrices
AitF:协作研究:使用结构化矩阵的深度神经网络同时加速和存储减少的框架
  • 批准号:
    1854742
  • 财政年份:
    2018
  • 资助金额:
    $ 43.66万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: A Framework of Simultaneous Acceleration and Storage Reduction on Deep Neural Networks Using Structured Matrices
AitF:协作研究:使用结构化矩阵的深度神经网络同时加速和存储减少的框架
  • 批准号:
    1733701
  • 财政年份:
    2017
  • 资助金额:
    $ 43.66万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: A Framework of Simultaneous Acceleration and Storage Reduction on Deep Neural Networks Using Structured Matrices
AitF:协作研究:使用结构化矩阵的深度神经网络同时加速和存储减少的框架
  • 批准号:
    1733834
  • 财政年份:
    2017
  • 资助金额:
    $ 43.66万
  • 项目类别:
    Standard Grant
Supporting reduction of suicide in the general population of Wales via the use of Structured Professional Judgment.
通过使用结构化专业判断来支持减少威尔士普通民众的自杀率。
  • 批准号:
    1947554
  • 财政年份:
    2017
  • 资助金额:
    $ 43.66万
  • 项目类别:
    Studentship
CAREER: New Models, Representations, and Dimensionality Reduction Techniques for Structured Data Sets
职业:结构化数据集的新模型、表示和降维技术
  • 批准号:
    1149225
  • 财政年份:
    2012
  • 资助金额:
    $ 43.66万
  • 项目类别:
    Continuing Grant
Nano-structured Catalysts for CO2 Reduction to Fuels
用于将二氧化碳还原为燃料的纳米结构催化剂
  • 批准号:
    EP/H046380/1
  • 财政年份:
    2010
  • 资助金额:
    $ 43.66万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了