RUI: New Variational Models for Denoising, Decomposition, and Deblurring
RUI:用于去噪、分解和去模糊的新变分模型
基本信息
- 批准号:0915219
- 负责人:
- 金额:$ 18.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator, collaborators and students will develop new models for image processing, show the models are mathematically sound, determine geometric properties of their solutions, develop accurate and efficient numerical schemes, and directly apply these models to problems in the sciences. The models will address four fundamental problems in image processing: edge-preserving denoising, decomposition, deblurring, and image fusion. The proposed formulations will be based on variational methods and partial differential equations, which provide an appropriate framework for studying the mathematical foundations and physical interpretation of the models.These include models involving convex linear growth functionals, the Besov semi-norm, and negative Sobolov norms, which can retain desirable geometric image properties such as edges and textures, while avoiding the introduction of false artifacts. One of the challenges addressed here will be finding appropriate discrete representations of the continuous problem that retain desirable geometric features and are tractable.Digital images are now used in almost every area of science and technology. The models developed in this project will be used to solve real world problems in areas such as medical imaging and material science. However, the models will be formulated in enough generality to potentially be applied to a wide array of applications in the sciences. Software developed in this grant will be made publicly available. The investigator regularly teaches courses on image processing, and leads workshops on image processing for middle school students and high school women and minorities. This project will also support undergraduate researchers. Thus this work will promote the training of young scientists, as well as provide educational opportunities to underrepresented groups.
研究者、合作者和学生将开发新的图像处理模型,展示模型在数学上是合理的,确定其解决方案的几何特性,开发准确有效的数值方案,并直接将这些模型应用于科学问题。这些模型将解决图像处理中的四个基本问题:边缘保持去噪、分解、去模糊和图像融合。提出的公式将基于变分方法和偏微分方程,这为研究模型的数学基础和物理解释提供了适当的框架。这些模型包括涉及凸线性增长函数、Besov半范数和负Sobolov范数的模型,这些模型可以保留理想的几何图像属性,如边缘和纹理,同时避免引入虚假伪影。这里讨论的挑战之一将是找到连续问题的适当离散表示,这些表示保留了理想的几何特征并且易于处理。数字图像现在几乎应用于每一个科学技术领域。本项目开发的模型将用于解决医学成像和材料科学等领域的现实问题。然而,这些模型将以足够的普遍性来表述,以潜在地应用于科学领域的广泛应用。在这项拨款中开发的软件将公开提供。调查员定期教授图像处理课程,并为中学生和高中女性和少数民族举办图像处理讲习班。该项目还将支持本科生研究人员。因此,这项工作将促进青年科学家的培训,并为代表性不足的群体提供教育机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stacey Levine其他文献
FUNCTIONALS WITH P (X)-GROWTH IN IMAGE RESTORATION
具有 P (X)-Growth 的图像恢复功能
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Stacey Levine;M. Rao - 通讯作者:
M. Rao
Three Approaches to Improve Denoising Results that Do Not Involve Developing New Denoising Methods
改善去噪结果的三种方法,无需开发新的去噪方法
- DOI:
10.1007/978-3-319-96029-6_11 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
G. Ghimpeteanu;Thomas Batard;Stacey Levine;M. Bertalmío - 通讯作者:
M. Bertalmío
UPWIND AND MULTISCALE FINITE-DIFFERENCE METHODS FOR TOTAL VARIATION–BASED IMAGE SMOOTHING
基于全变分的图像平滑的逆风和多尺度有限差分方法
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Stacey Levine;B. Lucier - 通讯作者:
B. Lucier
DENOISING AN IMAGE BY DENOISING ITS CURVATURE IMAGE By
通过对曲率图像进行去噪来对图像进行去噪
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
M. Bertalmío;Stacey Levine - 通讯作者:
Stacey Levine
Fusion of Bracketing Pictures
包围曝光图像的融合
- DOI:
10.1109/cvmp.2009.13 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
M. Bertalmío;Stacey Levine - 通讯作者:
Stacey Levine
Stacey Levine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stacey Levine', 18)}}的其他基金
RUI: New Applications of Curvature in Image Processing
RUI:曲率在图像处理中的新应用
- 批准号:
1320829 - 财政年份:2013
- 资助金额:
$ 18.79万 - 项目类别:
Standard Grant
RUI: Variational and PDE based methods for image processing
RUI:基于变分和偏微分方程的图像处理方法
- 批准号:
0505729 - 财政年份:2005
- 资助金额:
$ 18.79万 - 项目类别:
Standard Grant
相似海外基金
New development of numerical analysis based on the space-time variational method
基于时空变分法的数值分析新进展
- 批准号:
21H04431 - 财政年份:2021
- 资助金额:
$ 18.79万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
New methods for variational problems in Riemannian geometry
黎曼几何中变分问题的新方法
- 批准号:
RGPIN-2017-06068 - 财政年份:2021
- 资助金额:
$ 18.79万 - 项目类别:
Discovery Grants Program - Individual
New methods for variational problems in Riemannian geometry
黎曼几何中变分问题的新方法
- 批准号:
RGPIN-2017-06068 - 财政年份:2020
- 资助金额:
$ 18.79万 - 项目类别:
Discovery Grants Program - Individual
A new refinement allowing infinite-order degeneration and explosion of weighted classical inequalities and its application to variational problems
允许加权经典不等式的无限阶退化和爆炸的新改进及其在变分问题中的应用
- 批准号:
20K03670 - 财政年份:2020
- 资助金额:
$ 18.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Stein Variational Gradient Descent: A New Foundation for Inference
职业生涯:斯坦因变分梯度下降:新的推理基础
- 批准号:
1846421 - 财政年份:2019
- 资助金额:
$ 18.79万 - 项目类别:
Continuing Grant
New methods for variational problems in Riemannian geometry
黎曼几何中变分问题的新方法
- 批准号:
RGPIN-2017-06068 - 财政年份:2019
- 资助金额:
$ 18.79万 - 项目类别:
Discovery Grants Program - Individual
Advanced Research on Second-Order Variational Analysis with New Applications to Optimization, Control, and Practical Modeling
二阶变分分析的高级研究及其在优化、控制和实际建模中的新应用
- 批准号:
1808978 - 财政年份:2018
- 资助金额:
$ 18.79万 - 项目类别:
Standard Grant
New methods for variational problems in Riemannian geometry
黎曼几何中变分问题的新方法
- 批准号:
RGPIN-2017-06068 - 财政年份:2018
- 资助金额:
$ 18.79万 - 项目类别:
Discovery Grants Program - Individual
A new approach to Grothendieck's variational Hodge conjecture
格洛腾迪克变分霍奇猜想的新方法
- 批准号:
17K18723 - 财政年份:2017
- 资助金额:
$ 18.79万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
New methods for variational problems in Riemannian geometry
黎曼几何中变分问题的新方法
- 批准号:
RGPIN-2017-06068 - 财政年份:2017
- 资助金额:
$ 18.79万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




