ATD: Mathematical Algorithms for Characterizing Spectral Signatures of Chemical and Biological Agents

ATD:表征化学和生物制剂光谱特征的数学算法

基本信息

  • 批准号:
    0915262
  • 负责人:
  • 金额:
    $ 40.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

This proposal concerns the development and evaluation of new mathematical algorithms for the detection and classification of chemical and biological agents. An automatic detection and classification system operates by first identifying the existence of a signal of interest followed by classification of the signal. The classification stage consists of comparing the observation of interest to a small library of spectra of materials of interest. There are a host of significant challenges, both logistical and technical, surrounding such automatic detection and classification of threat agents in the field. The actual spectra collected in the field may have signatures which are not a direct match to the Raman spectrum collected under controlled conditions and the amplitude of the signal of interest is generally much smaller than the amplitude of the continuously changing background spectra. New mathematical algorithms will be developed for characterizing spectral signatures using an integrated geometric and statistical approach.The results of this research program are intended to be employed in mobile field-operable systems for the laser interrogation of surface agents (LISA) to enabled real time sensing and characterization of potential civilian and military exposure biological and chemical agents. As an example, a portable Mini-Raman Lidar System (MRLS) has been developed capable of measuring Raman spectral signatures at short standoff distances, e.g., 1-2.5 meters. These systems may be mounted on vehicles and could be used to support military operations by detecting toxic fingerprints and alerting military personnel to potential threats from chemical or biological weapons. This new technology has created the need to produce an automated biological and chemical threat agent detection system based on exploiting the characteristic signatures of Raman spectra associated with different compounds including warfare agents. The main objective of the proposed investigation is to develop algorithms capable of agent identification witha false positive rate of less than one in 90,000. This project will train two graduate students in an area of mathematics that has applications to National Security.
该提案涉及开发和评价用于化学和生物制剂检测和分类的新数学算法。自动检测和分类系统通过首先识别感兴趣的信号的存在,然后对信号进行分类来操作。分类阶段包括将感兴趣的观察结果与感兴趣的材料的小光谱库进行比较。围绕着这种对实地威胁物剂的自动检测和分类,存在着许多重大的后勤和技术挑战。在现场收集的实际光谱可能具有与在受控条件下收集的拉曼光谱不直接匹配的特征,并且感兴趣的信号的幅度通常比连续变化的背景光谱的幅度小得多。将开发新的数学算法,利用综合几何和统计方法来表征光谱特征,这一研究方案的结果将用于移动的现场可操作系统,用于表面剂的激光询问(丽莎),以实现真实的时间感测和表征潜在的民用和军用接触生物和化学剂。作为一个例子,已经开发了便携式微型拉曼激光雷达系统(MRLS),其能够在短的间隔距离处测量拉曼光谱特征,例如,1-2.5米。这些系统可以安装在车辆上,通过检测有毒指纹和提醒军事人员注意化学或生物武器的潜在威胁来支持军事行动。这种新技术产生了生产自动化生物和化学威胁剂检测系统的需要,该系统基于利用与包括战剂的不同化合物相关的拉曼光谱的特征签名。拟议的调查的主要目标是开发能够识别代理的算法,其假阳性率小于1/90,000。 该项目将培养两名研究生在数学领域,有应用到国家安全。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Kirby其他文献

Lagrangian mixing in an axisymmetric hurricane model
轴对称飓风模型中的拉格朗日混合
  • DOI:
    10.5194/acp-10-6777-2010
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    B. Rutherford;G. Dangelmayr;J. Persing;Michael Kirby;M. Montgomery
  • 通讯作者:
    M. Montgomery
Variable-interval reinforcement schedule value influences responding following REM sleep deprivation.
可变间隔强化计划值影响快速眼动睡眠剥夺后的反应。
Telmisartan - An effective antihypertensive for 24-hour blood pressure control
替米沙坦 - 一种有效的抗高血压药物,可实现 24 小时血压控制
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Chambers;M. Schachter;J. Morrell;G. Kassianos;A. Gaw;Michael Kirby;J. Tamargo;B. Yawn;R. Yawn;Khalid Barakat;Pam Brown;Jamie Dalrymple;K. Elward;T. Ganiats;D. Halpin;M. Lefèvre;F. North;D. Price;J. Rasmussen;Steven Spann;R. Stevens;A. Tallia;D. Uden;Marion Waite;D. Waller
  • 通讯作者:
    D. Waller
Patients' rights--why the Australian courts have rejected 'Bolam'.
患者权利——澳大利亚法院为何驳回“Bolam”。
  • DOI:
    10.1136/jme.21.1.5
  • 发表时间:
    1995
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Michael Kirby
  • 通讯作者:
    Michael Kirby
Minimal dynamical systems from PDEs using Sobolev eigenfunctions
  • DOI:
    10.1016/0167-2789(92)90014-e
  • 发表时间:
    1982-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Kirby
  • 通讯作者:
    Michael Kirby

Michael Kirby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Kirby', 18)}}的其他基金

CC* CIRA: Bridging the Digital Chasm HPC for ALL
CC* CIRA:为所有人弥合数字鸿沟 HPC
  • 批准号:
    2346713
  • 财政年份:
    2024
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Standard Grant
ATD: Algorithms for Data Analysis on Abstract Manifolds
ATD:抽象流形数据分析算法
  • 批准号:
    1830676
  • 财政年份:
    2018
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Continuing Grant
BIGDATA: F: Data Driven Optimization on Flag Manifolds with Geometric Constraints
BIGDATA:F:具有几何约束的标志流形的数据驱动优化
  • 批准号:
    1633830
  • 财政年份:
    2016
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Standard Grant
RAPID: Early Warning Algorithms for Predicting Ebola Infection Outcomes
RAPID:预测埃博拉感染结果的早期预警算法
  • 批准号:
    1513633
  • 财政年份:
    2015
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Standard Grant
ATD: Detection and Classification of Threats Using Subspace Manifold Geometry
ATD:使用子空间流形几何进行威胁检测和分类
  • 批准号:
    1322508
  • 财政年份:
    2013
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Continuing Grant
CDS&E-MSS: Algebraic and Geometric Tools and Algorithms for the Analysis of Data Clouds and Large Data Arrays
CDS
  • 批准号:
    1228308
  • 财政年份:
    2012
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Continuing Grant
ATD: Geometric and Statistical Data Analysis on Special Manifolds for Threat Detection
ATD:用于威胁检测的特殊流形的几何和统计数据分析
  • 批准号:
    1120875
  • 财政年份:
    2011
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Standard Grant
MSPA-MCS: New Tools for Algebro-Geometric Data Analysis
MSPA-MCS:代数几何数据分析的新工具
  • 批准号:
    0434351
  • 财政年份:
    2004
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Standard Grant
A Mathematical Modeling Program for Undergraduates in Science, Mathematics, Engineering and Technology
面向科学、数学、工程和技术专业本科生的数学建模项目
  • 批准号:
    0126650
  • 财政年份:
    2002
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Standard Grant
Quantifying Paleoproductivity from Biomass Estimates of Epifaunal Suspension Feeders: A Test of the Productivity Hypothesis in Latest Pliocene Tropical America
从表层动物悬浮饲养者的生物量估计中量化古生产力:对最新上新世热带美洲生产力假说的检验
  • 批准号:
    0000495
  • 财政年份:
    2001
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Fellowship Award

相似海外基金

CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
  • 批准号:
    2340631
  • 财政年份:
    2024
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Continuing Grant
Optimal Grain Diagrams: Mathematical Analysis and Algorithms
最佳晶粒图:数学分析和算法
  • 批准号:
    EP/X035883/1
  • 财政年份:
    2023
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Research Grant
Collaborative Research: Dynamical Sampling on Graphs: Mathematical Framework and Algorithms
协作研究:图动态采样:数学框架和算法
  • 批准号:
    2208031
  • 财政年份:
    2022
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamical Sampling on Graphs: Mathematical Framework and Algorithms
协作研究:图动态采样:数学框架和算法
  • 批准号:
    2208030
  • 财政年份:
    2022
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Standard Grant
Mathematical models and algorithms to support the evolution of operational practices
支持操作实践演变的数学模型和算法
  • 批准号:
    RGPIN-2021-03327
  • 财政年份:
    2022
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Discovery Grants Program - Individual
Advancing DNA sequence analysis algorithms using biologically inspired and mathematical sound analysis at the University of Tokyo
东京大学利用生物学启发和数学声音分析推进 DNA 序列分析算法
  • 批准号:
    577723-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Clustering and semi-supervised learning on large heterogeneous graphs: Mathematical formulations and numerical optimization algorithms
大型异构图上的聚类和半监督学习:数学公式和数值优化算法
  • 批准号:
    569398-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CAREER: Deep Learning Based Scientific Computing: Mathematical Theory and Algorithms
职业:基于深度学习的科学计算:数学理论与算法
  • 批准号:
    2244988
  • 财政年份:
    2022
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Continuing Grant
CAREER: Advancing Mathematical Models and Algorithms for Decentralized Optimization in Complex Multi-agent Networks
职业:推进复杂多智能体网络中分散优化的数学模型和算法
  • 批准号:
    2323159
  • 财政年份:
    2022
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Standard Grant
Mathematical Optimization: Theory and Algorithms
数学优化:理论与算法
  • 批准号:
    RGPIN-2020-04324
  • 财政年份:
    2022
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了