ATD: Detection and Classification of Threats Using Subspace Manifold Geometry
ATD:使用子空间流形几何进行威胁检测和分类
基本信息
- 批准号:1322508
- 负责人:
- 金额:$ 40.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal concerns the development of new mathematical algorithms for detecting and classifying threats in large data sets arising from the presence of, e.g., biological agents or chemical plumes. The investigators propose a geometric framework centered on encoding massive data sets on subspace manifolds. Exploiting the fact that a set of points of a given class can be represented as a low-dimensional subspace of a high dimensional ambient space, it is possible to capture more variability in the threats and thus characterize them with higher accuracy. There are many ways to represent data via subspaces, each leading to a rigorous notion of a manifold, e.g., the Grassmann and Stiefel manifolds. The investigators propose to use the geometry of these manifolds, either as abstract points or via constructing embeddings in Euclidean space, for representing patterns in threats. Detection and classification algorithms originally proposed for vector spaces may now be extended to algorithms over subspace manifolds. The proposed interdisciplinary research program addresses the detection and classification of chemical and biological threats, a major challenge for National Security. Threats delivered to an urban environment or military theater, are potentially comprised of unknown substances and the goal is to detect, characterize and track the threat. Alternatively, threats may be associated with known substances and the goal is to not only detect but classify the actual material or agent by matching it to a library of signatures of known threats. The basic research to be performed will be evaluated in the context of data sets made available by the Defense Threat Reduction Agency. These include (but are not limited to) data acquired using a Fabry-Perot Interferometer, Frequency Agile Lidar, and Raman Spectroscopy. The research will be led by faculty from the Departments of Mathematics and Computer Science at Colorado State University, providing the students with unique multidisciplinary experience with research integration in education.
该建议涉及开发新的数学算法,用于检测和分类大数据集中的威胁,这些威胁来自于,例如,生物制剂或化学羽流研究人员提出了一个以子空间流形上的大量数据集编码为中心的几何框架。利用给定类的一组点可以表示为高维环境空间的低维子空间的事实,可以捕获威胁中的更多变化性,从而以更高的准确度表征它们。有许多方法可以通过子空间表示数据,每种方法都导致流形的严格概念,例如,格拉斯曼和斯蒂费尔流形研究人员建议使用这些流形的几何形状,无论是作为抽象点,还是通过在欧几里得空间中构建嵌入,来表示威胁的模式。最初针对向量空间提出的检测和分类算法现在可以扩展到子空间流形上的算法。拟议的跨学科研究计划解决了化学和生物威胁的检测和分类,这是国家安全的一个重大挑战。交付给城市环境或军事战区的威胁可能由未知物质组成,目标是检测、表征和跟踪威胁。 或者,威胁可能与已知物质相关联,目标是不仅检测实际材料或制剂,而且通过将其与已知威胁的特征库相匹配来对其进行分类。 将根据国防威胁减少局提供的数据集对将要进行的基础研究进行评估。这些包括(但不限于)使用法布里-珀罗干涉仪、频率捷变激光雷达和拉曼光谱学获取的数据。该研究将由科罗拉多州立大学数学和计算机科学系的教师领导,为学生提供独特的多学科经验,并将研究整合到教育中。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Subspace Quantization on the Grassmannian
- DOI:10.1007/978-3-030-19642-4_25
- 发表时间:2019-04
- 期刊:
- 影响因子:0
- 作者:S. Stiverson;M. Kirby;C. Peterson
- 通讯作者:S. Stiverson;M. Kirby;C. Peterson
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Kirby其他文献
Lagrangian mixing in an axisymmetric hurricane model
轴对称飓风模型中的拉格朗日混合
- DOI:
10.5194/acp-10-6777-2010 - 发表时间:
2009 - 期刊:
- 影响因子:6.3
- 作者:
B. Rutherford;G. Dangelmayr;J. Persing;Michael Kirby;M. Montgomery - 通讯作者:
M. Montgomery
Variable-interval reinforcement schedule value influences responding following REM sleep deprivation.
可变间隔强化计划值影响快速眼动睡眠剥夺后的反应。
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:2.7
- 作者:
Michael Kirby;C. Kennedy - 通讯作者:
C. Kennedy
Telmisartan - An effective antihypertensive for 24-hour blood pressure control
替米沙坦 - 一种有效的抗高血压药物,可实现 24 小时血压控制
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
S. Chambers;M. Schachter;J. Morrell;G. Kassianos;A. Gaw;Michael Kirby;J. Tamargo;B. Yawn;R. Yawn;Khalid Barakat;Pam Brown;Jamie Dalrymple;K. Elward;T. Ganiats;D. Halpin;M. Lefèvre;F. North;D. Price;J. Rasmussen;Steven Spann;R. Stevens;A. Tallia;D. Uden;Marion Waite;D. Waller - 通讯作者:
D. Waller
Patients' rights--why the Australian courts have rejected 'Bolam'.
患者权利——澳大利亚法院为何驳回“Bolam”。
- DOI:
10.1136/jme.21.1.5 - 发表时间:
1995 - 期刊:
- 影响因子:4.1
- 作者:
Michael Kirby - 通讯作者:
Michael Kirby
Minimal dynamical systems from PDEs using Sobolev eigenfunctions
- DOI:
10.1016/0167-2789(92)90014-e - 发表时间:
1982-08 - 期刊:
- 影响因子:0
- 作者:
Michael Kirby - 通讯作者:
Michael Kirby
Michael Kirby的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Kirby', 18)}}的其他基金
CC* CIRA: Bridging the Digital Chasm HPC for ALL
CC* CIRA:为所有人弥合数字鸿沟 HPC
- 批准号:
2346713 - 财政年份:2024
- 资助金额:
$ 40.16万 - 项目类别:
Standard Grant
ATD: Algorithms for Data Analysis on Abstract Manifolds
ATD:抽象流形数据分析算法
- 批准号:
1830676 - 财政年份:2018
- 资助金额:
$ 40.16万 - 项目类别:
Continuing Grant
BIGDATA: F: Data Driven Optimization on Flag Manifolds with Geometric Constraints
BIGDATA:F:具有几何约束的标志流形的数据驱动优化
- 批准号:
1633830 - 财政年份:2016
- 资助金额:
$ 40.16万 - 项目类别:
Standard Grant
RAPID: Early Warning Algorithms for Predicting Ebola Infection Outcomes
RAPID:预测埃博拉感染结果的早期预警算法
- 批准号:
1513633 - 财政年份:2015
- 资助金额:
$ 40.16万 - 项目类别:
Standard Grant
CDS&E-MSS: Algebraic and Geometric Tools and Algorithms for the Analysis of Data Clouds and Large Data Arrays
CDS
- 批准号:
1228308 - 财政年份:2012
- 资助金额:
$ 40.16万 - 项目类别:
Continuing Grant
ATD: Geometric and Statistical Data Analysis on Special Manifolds for Threat Detection
ATD:用于威胁检测的特殊流形的几何和统计数据分析
- 批准号:
1120875 - 财政年份:2011
- 资助金额:
$ 40.16万 - 项目类别:
Standard Grant
ATD: Mathematical Algorithms for Characterizing Spectral Signatures of Chemical and Biological Agents
ATD:表征化学和生物制剂光谱特征的数学算法
- 批准号:
0915262 - 财政年份:2009
- 资助金额:
$ 40.16万 - 项目类别:
Continuing Grant
MSPA-MCS: New Tools for Algebro-Geometric Data Analysis
MSPA-MCS:代数几何数据分析的新工具
- 批准号:
0434351 - 财政年份:2004
- 资助金额:
$ 40.16万 - 项目类别:
Standard Grant
A Mathematical Modeling Program for Undergraduates in Science, Mathematics, Engineering and Technology
面向科学、数学、工程和技术专业本科生的数学建模项目
- 批准号:
0126650 - 财政年份:2002
- 资助金额:
$ 40.16万 - 项目类别:
Standard Grant
Quantifying Paleoproductivity from Biomass Estimates of Epifaunal Suspension Feeders: A Test of the Productivity Hypothesis in Latest Pliocene Tropical America
从表层动物悬浮饲养者的生物量估计中量化古生产力:对最新上新世热带美洲生产力假说的检验
- 批准号:
0000495 - 财政年份:2001
- 资助金额:
$ 40.16万 - 项目类别:
Fellowship Award
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
EAGER: IMPRESS-U: Exploratory Research in Robust Machine Learning for Object Detection and Classification
EAGER:IMPRESS-U:用于对象检测和分类的鲁棒机器学习的探索性研究
- 批准号:
2415299 - 财政年份:2024
- 资助金额:
$ 40.16万 - 项目类别:
Standard Grant
OAC Core: Enhancing Network Security by Implementing an ML Malware Detection and Classification Scheme in P4 Programmable Data Planes and SmartNICs
OAC 核心:通过在 P4 可编程数据平面和智能网卡中实施 ML 恶意软件检测和分类方案来增强网络安全
- 批准号:
2403360 - 财政年份:2024
- 资助金额:
$ 40.16万 - 项目类别:
Standard Grant
FY 2023 SBIR TOPIC 402 PHASE II. ENHANCE THE PERFORMANCE OF THE AI FOR LYMPH NODE DETECTION, SEGMENTATION AND MEASUREMENTS AND DEVELOP ADDITIONAL AI MODELS FOR MALIGNANCY CLASSIFICATION LEVERAGING MU
2023 财年 SBIR 主题 402 第二阶段。
- 批准号:
10928777 - 财政年份:2023
- 资助金额:
$ 40.16万 - 项目类别:
CDS&E: Detection, Instance Segmentation, and Classification for Astronomical Surveys with Deep Learning (DeepDISC)
CDS
- 批准号:
2308174 - 财政年份:2023
- 资助金额:
$ 40.16万 - 项目类别:
Standard Grant
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
- 批准号:
10576701 - 财政年份:2023
- 资助金额:
$ 40.16万 - 项目类别:
Broadband sensor array measurements, signal processing, detection and classification of rare events
宽带传感器阵列测量、信号处理、罕见事件的检测和分类
- 批准号:
RGPIN-2019-04902 - 财政年份:2022
- 资助金额:
$ 40.16万 - 项目类别:
Discovery Grants Program - Individual
Drivers' cognitive load detection through ocular metrics classification for the development on Driver Monitoring Systems
通过视觉指标分类检测驾驶员的认知负荷,以开发驾驶员监控系统
- 批准号:
DGECR-2022-00477 - 财政年份:2022
- 资助金额:
$ 40.16万 - 项目类别:
Discovery Launch Supplement
Drivers' cognitive load detection through ocular metrics classification for the development on Driver Monitoring Systems
通过视觉指标分类检测驾驶员的认知负荷,以开发驾驶员监控系统
- 批准号:
RGPIN-2022-03490 - 财政年份:2022
- 资助金额:
$ 40.16万 - 项目类别:
Discovery Grants Program - Individual
A novel approach for landform classification based on salience detection integrating expert knowledge and deep learning
结合专家知识和深度学习的基于显着性检测的地貌分类新方法
- 批准号:
RGPIN-2022-03885 - 财政年份:2022
- 资助金额:
$ 40.16万 - 项目类别:
Discovery Grants Program - Individual
OCE-PRF Chemical Imaging for Molecular Detection and Classification of Microplastics and their Influence on Zebrafish
用于微塑料分子检测和分类的 OCE-PRF 化学成像及其对斑马鱼的影响
- 批准号:
2205819 - 财政年份:2022
- 资助金额:
$ 40.16万 - 项目类别:
Standard Grant