AF:Small:Geometric Embedding and Covering: Sequential and Distributed Approximation Algorithms

AF:Small:几何嵌入和覆盖:顺序和分布式逼近算法

基本信息

  • 批准号:
    0915543
  • 负责人:
  • 金额:
    $ 44.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

Over the last decade, wireless networks of various kinds, including cellular networks, wireless LANs, sensor networks, community networks, etc. have become ubiquitous. This award focuses on algorithmic problems motivated by the design of protocols and applications for some of these networks. One feature of these networks, that the proposal attempts to take advantage of, is that network nodes typically reside in the plane or in 3-dimensional space and furthermore communication and sensing ranges of these nodes may also be modeled geometrically (for example, as disks or spheres in Euclidean space). As a result the award focuses on optimization problems in the geometric context and the goal is to design algorithms for these problems that can eventually be implemented efficiently on the network nodes. One class of problems considered are geometric embedding problems in which network nodes seek to discover their locations based only on information about which other nodes are within communication range. Solutions to these problems have the potential to improve routing protocols on these networks. Another class of problems PIs consider are geometric coverage problems whose aim is to optimally place sensor nodes with given sensing abilities so as to cover certain target regions. Such coverage problems arise in a variety of sensor network applications such as monitoring bridges, vineyards, and factory floors.
在过去十年中,包括蜂窝网络、无线局域网、传感器网络、社区网络等的各种无线网络已经变得无处不在。该奖项专注于其中一些网络的协议和应用程序设计所激发的算法问题。该提议试图利用的这些网络的一个特征是,网络节点通常驻留在平面或三维空间中,并且此外,这些节点的通信和感测范围也可以几何地建模(例如,作为欧几里得空间中的圆盘或球体)。因此,该奖项侧重于几何背景下的优化问题,目标是为这些问题设计算法,最终可以在网络节点上有效地实现。考虑的一类问题是几何嵌入问题,其中网络节点仅基于关于哪些其他节点在通信范围内的信息来寻求发现它们的位置。这些问题的解决方案有可能改善这些网络上的路由协议。PI考虑的另一类问题是几何覆盖问题,其目的是最佳地放置传感器节点与给定的传感能力,以覆盖某些目标区域。这种覆盖问题出现在各种传感器网络应用中,例如监控桥梁、葡萄园和工厂车间。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sriram Pemmaraju其他文献

Sriram Pemmaraju的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sriram Pemmaraju', 18)}}的其他基金

Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402835
  • 财政年份:
    2024
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: Detecting and Controlling Network-based Spread of Hospital Acquired Infections
III:媒介:合作研究:检测和控制医院获得性感染的网络传播
  • 批准号:
    1955939
  • 财政年份:
    2020
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Standard Grant
AF: Small: Super-Fast Distributed Algorithms
AF:小型:超快速分布式算法
  • 批准号:
    1318166
  • 财政年份:
    2013
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Standard Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

AF: Small: Understanding Expansion Phenomena: Graphical, Hypergraphical, Geometric, and Quantum
AF:小:理解膨胀现象:图形、超图形、几何和量子
  • 批准号:
    2326685
  • 财政年份:
    2023
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Standard Grant
NSF-BSF: AF: Small: New directions in geometric traversal theory
NSF-BSF:AF:小:几何遍历理论的新方向
  • 批准号:
    2317241
  • 财政年份:
    2023
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Efficient Algorithms for Optimal Transport in Geometric Settings
合作研究:AF:小:几何设置中最佳传输的高效算法
  • 批准号:
    2223871
  • 财政年份:
    2022
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Standard Grant
AF: Small: Algorithms for Geometric Shortest Paths and Related Problems
AF:小:几何最短路径算法及相关问题
  • 批准号:
    2300356
  • 财政年份:
    2022
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Efficient Algorithms for Optimal Transport in Geometric Settings
合作研究:AF:小:几何设置中最佳传输的高效算法
  • 批准号:
    2223870
  • 财政年份:
    2022
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Standard Grant
AF: Small: Algorithms for Geometric Shortest Paths and Related Problems
AF:小:几何最短路径算法及相关问题
  • 批准号:
    2005323
  • 财政年份:
    2020
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Standard Grant
AF: Small: Comprehensive Groebner, Parametric GCD Computations and Real Geometric Reasoning
AF:小:综合 Groebner、参数 GCD 计算和真实几何推理
  • 批准号:
    1908804
  • 财政年份:
    2019
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Standard Grant
AF: Small: Geometric Inequalities, Clustering Hardness, and Social Choice
AF:小:几何不等式、聚类难度和社会选择
  • 批准号:
    1911216
  • 财政年份:
    2019
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Standard Grant
AF: Small: Geometric Sampling Theory and Robust Machine Learning Algorithms
AF:小:几何采样理论和鲁棒机器学习算法
  • 批准号:
    1909235
  • 财政年份:
    2019
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Standard Grant
AF: Small: Towards Sturdier Geometric Algorithms
AF:小:迈向更坚固的几何算法
  • 批准号:
    1907400
  • 财政年份:
    2019
  • 资助金额:
    $ 44.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了