LIGHT-TRANSDUCTION IN MELANOPSIN-EXPRESSING PHOTORECEPTORS OF AMPHIOXUS Mechanistic analysis and evolutionary implications

文昌鱼表达黑色素的光感受器的光传导机制分析和进化意义

基本信息

  • 批准号:
    0918930
  • 负责人:
  • 金额:
    $ 53.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-15 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

"This award is funded under the American Recovery and Reinvestment Act of 2009(Public Law 111-5)."Animal vision was traditionally thought to be comprised of two distinct lineages of sensory cells that evolved separately in vertebrates vs. invertebrates. These photoreceptors differ fundamentally in the light sensor structure and the biochemistry to convert captured photons into electrical signals. Such view was challenged by the discovery of additional light-detection schemes and by clues pointing to a likely common origin for all photoreceptors. One pivotal finding was the identification of novel light-sensitive mammalian cells, which regulate the biological clock via a photon-capturing molecule, melanopsin, akin to those of invertebrates. However, the enormous divergence between these groups of animals makes comparative analysis arduous, exacerbated by the difficulties to characterize melanopsin-signaling in mammalian cells, owing to their scarcity. This impasse could be alleviated by examining some precursor of modern vertebrates, to bridge this evolutionary chasm. Amphioxus offers unique advantages, because genomic research established that it is the most basal living chordate and has remained close to its ancestral condition. It thus provides a favorable window to examine biological mechanisms as they may have existed when the vertebrate branch separated. Melanopsin has been detected in some identifiable amphioxus cells, but no functional study had been conducted; the investigators will capitalize on their initial results, demonstrating the feasibility to isolate these cells and measure light-induced electrical responses. The project will recruit and train graduate students at the Marine Biological Laboratory in Woods Hole. The Marine Biological Laboratory provides an outstanding environment for this work. A multi-pronged approach will characterize the photoresponse mechanisms, identify intermediate steps of stimulus-response coupling, and initiate their molecular characterization. The benefits will be two-fold: help clarify the evolution of light-sensing, and elucidate melanopsin signaling mechanisms, which remain largely elusive. The multi-disciplinary nature of the project provides a fertile ground to train young investigators, exposing them to issues ranging from evolutionary biology to sensory physiology and cellular biophysics; the technical arsenal will be correspondingly diverse, encompassing electrical and optical recording, molecular and immunological identification, and bio-informatics tools.
“该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。“动物视觉传统上被认为是由两种不同的感觉细胞谱系组成,它们分别在脊椎动物和无脊椎动物中进化。 这些光感受器在光传感器结构和将捕获的光子转换为电信号的生物化学方面有根本的不同。 这一观点受到了新发现的光探测机制的挑战,并有线索指出,所有光感受器可能都有共同的起源。 一个关键的发现是鉴定出了新的光敏哺乳动物细胞,这些细胞通过一种光子捕获分子黑视蛋白来调节生物钟,类似于无脊椎动物的细胞。 然而,这些动物群体之间的巨大差异使得比较分析变得困难,由于它们的稀缺性,难以描述哺乳动物细胞中的黑视素信号传导。 这一僵局可以通过研究现代脊椎动物的某些前身来缓解,以弥合这一进化鸿沟。 文昌鱼提供了独特的优势,因为基因组研究表明,它是最基本的生活脊索动物,并保持接近其祖先的条件。 因此,它提供了一个有利的窗口,以检查生物学机制,因为它们可能已经存在时,脊椎动物分支分离。 在一些可识别的文昌鱼细胞中检测到黑视素,但尚未进行功能研究;研究人员将利用他们的初步结果,证明分离这些细胞并测量光诱导电反应的可行性。 该项目将在伍兹霍尔的海洋生物实验室招募和培训研究生。 海洋生物实验室为这项工作提供了一个出色的环境。 多管齐下的方法将表征光响应机制,识别刺激-响应耦合的中间步骤,并启动其分子表征。 它的好处是双重的:有助于阐明感光的进化,并阐明黑视素信号传导机制,这在很大程度上仍然是难以捉摸的。 该项目的多学科性质为培训年轻的研究人员提供了肥沃的土壤,使他们接触到从进化生物学到感觉生理学和细胞生物物理学的问题;技术武器库将相应地多样化,包括电子和光学记录,分子和免疫学鉴定以及生物信息学工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maria del Pilar Gomez其他文献

Maria del Pilar Gomez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Dissecting bacterial signal transduction
剖析细菌信号转导
  • 批准号:
    DP240102465
  • 财政年份:
    2024
  • 资助金额:
    $ 53.51万
  • 项目类别:
    Discovery Projects
Conference: 2024 Photosensory Receptors and Signal Transduction GRC/GRS: Light-Dependent Molecular Mechanism, Cellular Response and Organismal Behavior
会议:2024光敏受体和信号转导GRC/GRS:光依赖性分子机制、细胞反应和生物体行为
  • 批准号:
    2402252
  • 财政年份:
    2024
  • 资助金额:
    $ 53.51万
  • 项目类别:
    Standard Grant
Exploiting protein import to interrogate energy transduction through the bacterial cell envelope
利用蛋白质输入来询问通过细菌细胞包膜的能量转导
  • 批准号:
    BB/X016366/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.51万
  • 项目类别:
    Research Grant
2024 Signal Transduction in Engineered Extracellular Matrices Gordon Research Conference and Seminar; Southern New Hampshire University, Manchester, New Hampshire; 20-26 July 2024
2024年工程细胞外基质信号转导戈登研究会议及研讨会;
  • 批准号:
    2414497
  • 财政年份:
    2024
  • 资助金额:
    $ 53.51万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
  • 批准号:
    2419915
  • 财政年份:
    2024
  • 资助金额:
    $ 53.51万
  • 项目类别:
    Standard Grant
Development of tendon/ligament repair modulater using a chemically modified Tetra-PEG gel with signal transduction capability
使用具有信号转导能力的化学改性 Tetra-PEG 凝胶开发肌腱/韧带修复调节剂
  • 批准号:
    23K18325
  • 财政年份:
    2023
  • 资助金额:
    $ 53.51万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
TLR Transduction of Dysbiotic Pelvic Pain
生态失调性盆腔疼痛的 TLR 转导
  • 批准号:
    10737191
  • 财政年份:
    2023
  • 资助金额:
    $ 53.51万
  • 项目类别:
Conference: 2023 Sensory Transduction in Microorganisms GRC/GRS: Microbial Signaling: From Molecular Mechanisms to Key Roles in Complex Environments
会议:2023 微生物感觉转导 GRC/GRS:微生物信号传导:从分子机制到复杂环境中的关键作用
  • 批准号:
    2400749
  • 财政年份:
    2023
  • 资助金额:
    $ 53.51万
  • 项目类别:
    Standard Grant
RII Track-4:NSF:Chloroplast retrograde signaling during plant immunity: integrating signal transduction and cellular dynamics
RII Track-4:NSF:植物免疫过程中叶绿体逆行信号传导:整合信号转导和细胞动力学
  • 批准号:
    2329266
  • 财政年份:
    2023
  • 资助金额:
    $ 53.51万
  • 项目类别:
    Standard Grant
Understanding the role of hair cell mechanoelectrical transduction in age-related and noise-induced hearing loss
了解毛细胞机电转导在年龄相关性和噪声性听力损失中的作用
  • 批准号:
    BB/X000567/1
  • 财政年份:
    2023
  • 资助金额:
    $ 53.51万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了