Elucidating the Genetic Architecture of ProVitamin A and Vitamin E Biosynthesis in Seed

阐明种子中维生素原 A 和维生素 E 生物合成的遗传结构

基本信息

  • 批准号:
    0922493
  • 负责人:
  • 金额:
    $ 425.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-15 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

PI: Dean DellaPenna (Michigan State University)CoPIs: C. Robin Buell (Michigan State University), Edward S. Buckler (Cornell University/USDA-ARS), and Torbert R. Rocheford (Purdue University)Key Collaborators: Michael A. Gore (University of Arizona/USDA-ARS) and Jianbing Yan (CIMMYT, Mexico)Senior Personnel: Dick Johnson (University of Illinois at Urbana-Champaign) and Theresa M. Fulton (Cornell University)Carotenoids are a group of several hundred distinct chemical compounds that are essential for vision and immune system function and as natural colorants in fresh and processed foods. Some carotenoids (betacarotene, alpha-carotene and beta-cryptoxanthin) are the major provitamin A compounds in the human diet while others such as lutein and lycopene play a role in decreasing the incidence and severity of macular degeneration or prostate cancer, respectively. The goal of this project is to identify the genes and their most useful variants (alleles) in maize that determine the levels and compositions of carotenoids and vitamin E in maize seed. Using information obtained using the model plant Arabidopsis, maize genes corresponding to those responsible for the biosynthesis of carotenoids and vitamin E will be identified. Knowledge of the natural variation in the content and composition of these compounds in maize seed will be combined with the recently published genome sequence of maize and detailed analysis of gene expression during maize seed development to determine which specific alleles of these genes contribute the most to beneficial levels of these compounds in maize seed. The alleles identified can then be used in maize breeding programs to increase the levels of these compounds to enhance the quality of food and feed derived from maize. This same approach will also enable the identification of new and novel genes that play significant roles in determining the levels of carotenoids and vitamin E in maize. The combined information obtained will provide a road map for generating similar changes for these and other vitamins in other agricultural crops that serve as major food and feed sources for humanity. Understanding the molecular genetic basis of biochemical traits in agricultural seed crops that are essential for nutrition in humans and animals is a key component of meeting future global food and feed needs. The research will provide a comprehensive genetic assessment of natural variation in two such biochemical pathways and will serve as a model for genome scale integrative analysis of other areas of plant metabolism in maize and other agricultural plant species. The large body of publically available gene expression data generated in this study will provide an unparalleled resource that will greatly impact the maize research community. The research will provide a unique environment for educating the next generation of scientists through engagement of high school, undergraduate, and graduate students as well as postdoctoral associates in research at interfaces of plant genetics, genomics, quantitative genetics and plant biochemistry. The researchers will engage under-represented groups in plant scientific research through targeted recruitment of Hispanic undergraduates to the research programs at all three universities. This outreach will include educating preschool children, K-12 students, and undergraduates in the concepts of genetics, plant breeding, biochemistry, nutrition, food sources and their relevance to diet and health. As vitamin deficiencies are a pervasive global health issue, a practical outcome of this research will be to provide the basis for more expedient and cost effective marker-assisted selection programs in maize for enhanced dietary levels of carotenoids and vitamin E in the US and developing countries. Toward this end, the project have established a network with researchers at CIMMYT (Mexico) and IITA (Nigeria) to facilitate seamless transfer of relevant results into active international breeding programs targeting developing countries. All data generated through this project will be available at the project website (http://www.maizegenomics.plantbiology.msu.edu) and through long-term data repositories that include the NCBI GEO (http://www.ncbi.nlm.nih.gov/geo/) and Short Read Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi), MaizeGDB (http://www.maizegdb.org/) and TAIR (http://www.arabidopsis.org/).
PI:Dean DellaPenna(密歇根州立大学)CoPI:C. Robin Buell(密歇根州立大学)、Edward S. Buckler(康奈尔大学/USDA-ARS)和 Torbert R. Rocheford(普渡大学)主要合作者:Michael A. Gore(亚利桑那大学/USDA-ARS)和 Jenbing Yan(CIMMYT,墨西哥)高级人员:Dick Johnson(伊利诺伊大学 类胡萝卜素是一组数百种不同的化合物,对视力和免疫系统功能至关重要,并且是新鲜和加工食品中的天然着色剂。 一些类胡萝卜素(β-胡萝卜素、α-胡萝卜素和β-隐黄素)是人类饮食中主要的维生素A原化合物,而其他类胡萝卜素(例如叶黄素和番茄红素)分别在降低黄斑变性或前列腺癌的发病率和严重程度方面发挥着作用。该项目的目标是确定玉米中决定玉米种子中类胡萝卜素和维生素 E 水平和成分的基因及其最有用的变体(等位基因)。 利用利用模式植物拟南芥获得的信息,将鉴定与负责类胡萝卜素和维生素E生物合成的基因相对应的玉米基因。 对玉米种子中这些化合物的含量和组成的自然变异的了解将与最近发表的玉米基因组序列以及玉米种子发育过程中基因表达的详细分析相结合,以确定这些基因的哪些特定等位基因对玉米种子中这些化合物的有益水平贡献最大。然后,鉴定出的等位基因可用于玉米育种计划,以提高这些化合物的水平,从而提高玉米食品和饲料的质量。同样的方法还将能够识别新的和新颖的基因,这些基因在确定玉米中类胡萝卜素和维生素 E 的水平方面发挥着重要作用。 获得的综合信息将为在作为人类主要食物和饲料来源的其他农作物中产生类似的这些维生素和其他维生素提供一个路线图。了解对人类和动物营养至关重要的农业种子作物生化性状的分子遗传基础是满足未来全球粮食和饲料需求的关键组成部分。该研究将对这两种生化途径的自然变异进行全面的遗传评估,并将作为玉米和其他农业植物物种植物代谢其他领域的基因组规模综合分析的模型。本研究产生的大量公开基因表达数据将提供无与伦比的资源,对玉米研究界产生重大影响。该研究将通过高中生、本科生和研究生以及博士后研究员参与植物遗传学、基因组学、定量遗传学和植物生物化学的研究,为教育下一代科学家提供独特的环境。研究人员将通过有针对性地招募西班牙裔本科生参加所有三所大学的研究项目,让代表性不足的群体参与植物科学研究。这项外展活动将包括对学龄前儿童、K-12 学生和本科生进行遗传学、植物育种、生物化学、营养、食物来源及其与饮食和健康的相关性等概念的教育。由于维生素缺乏是一个普遍存在的全球健康问题,这项研究的实际成果将为玉米中更方便、更具成本效益的标记辅助选择计划提供基础,以提高美国和发展中国家的类胡萝卜素和维生素 E 膳食水平。为此,该项目与 CIMMYT(墨西哥)和 IITA(尼日利亚)的研究人员建立了网络,以促进相关成果无缝转移到针对发展中国家的积极国际育种计划中。 通过该项目生成的所有数据将在项目网站 (http://www.maizegenomics.plantbiology.msu.edu) 以及包括 NCBI GEO (http://www.ncbi.nlm.nih.gov/geo/) 和 Short Read Archive 在内的长期数据存储库中提供 (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi)、MaizeGDB (http://www.maizegdb.org/) 和 TAIR (http://www.arabidopsis.org/)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dean DellaPenna其他文献

Biotinylated proteins as molecular weight standards on Western blots.
生物素化蛋白质作为蛋白质印迹的分子量标准。
  • DOI:
    10.1016/0003-2697(86)90417-3
  • 发表时间:
    1986
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Dean DellaPenna;Rolf E. Christoffersen;Alan B. Bennett
  • 通讯作者:
    Alan B. Bennett
Total tocopherol levels in maize grain depend on chlorophyll biosynthesis within the embryo
  • DOI:
    10.1186/s12870-025-06267-6
  • 发表时间:
    2025-03-13
  • 期刊:
  • 影响因子:
    4.800
  • 作者:
    Sam Herr;Xiaowei Li;Di Wu;Charles T. Hunter;Maria Magallanes-Lundback;Joshua C. Wood;Nicholas Kaczmar;C. Robin Buell;Dean DellaPenna;Michael A. Gore
  • 通讯作者:
    Michael A. Gore
Genes encoding polygalacturonases
  • DOI:
    10.1007/bf02671571
  • 发表时间:
    1994-06-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Don Grierson;Colin Bird;Dean DellaPenna;Régie Mache
  • 通讯作者:
    Régie Mache

Dean DellaPenna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dean DellaPenna', 18)}}的其他基金

RESEARCH-PGR: A Genome-level Approach to Balancing the Vitamin Content of Maize Grain
研究-PGR:平衡玉米籽粒维生素含量的基因组水平方法
  • 批准号:
    1546657
  • 财政年份:
    2016
  • 资助金额:
    $ 425.46万
  • 项目类别:
    Continuing Grant
Understanding the Biochemical Continuity of the ER and Chloroplast
了解内质网和叶绿体的生化连续性
  • 批准号:
    1354195
  • 财政年份:
    2014
  • 资助金额:
    $ 425.46万
  • 项目类别:
    Standard Grant
Functional Analysis of Tocopherols in Plants and their Integration within the Plastid Antioxidant Network
植物中生育酚的功能分析及其在质体抗氧化网络中的整合
  • 批准号:
    0235929
  • 财政年份:
    2003
  • 资助金额:
    $ 425.46万
  • 项目类别:
    Continuing Grant
Cloning and Functional Analysis of the Arabidopsis lut1 Locus: A Noval Activity Required for Hydroxylation of Epsilon Ring Carotenoids in Plants
拟南芥 lut1 基因座的克隆和功能分析:植物中 Epsilon 环类胡萝卜素羟基化所需的新活性
  • 批准号:
    0131253
  • 财政年份:
    2002
  • 资助金额:
    $ 425.46万
  • 项目类别:
    Continuing Grant
The In vivo Role of Xanthophylls in LHC Structure and Function
叶黄素在 LHC 结构和功能中的体内作用
  • 批准号:
    0096313
  • 财政年份:
    2000
  • 资助金额:
    $ 425.46万
  • 项目类别:
    Continuing Grant
The In vivo Role of Xanthophylls in LHC Structure and Function
叶黄素在 LHC 结构和功能中的体内作用
  • 批准号:
    9723592
  • 财政年份:
    1997
  • 资助金额:
    $ 425.46万
  • 项目类别:
    Continuing Grant
Expression & Function of the Tomato B-Subunit During Growth and Development
表达
  • 批准号:
    9696153
  • 财政年份:
    1996
  • 资助金额:
    $ 425.46万
  • 项目类别:
    Continuing Grant
Expression & Function of the Tomato B-Subunit During Growth and Development
表达
  • 批准号:
    9408826
  • 财政年份:
    1994
  • 资助金额:
    $ 425.46万
  • 项目类别:
    Continuing Grant
Cloning of Tomato Fruit Polygalacturonase (PG) Converter Protein : Analysis of PG Isozyme Function
番茄果实多聚半乳糖醛酸酶 (PG) 转化蛋白的克隆:PG 同工酶功能分析
  • 批准号:
    9018154
  • 财政年份:
    1991
  • 资助金额:
    $ 425.46万
  • 项目类别:
    Continuing Grant

相似海外基金

Elucidating the ancestry-specific genetic and environmental architecture of cardiometabolic traits across All of Us ethnic groups
阐明我们所有种族群体心脏代谢特征的祖先特异性遗传和环境结构
  • 批准号:
    10796028
  • 财政年份:
    2023
  • 资助金额:
    $ 425.46万
  • 项目类别:
Identifying genetic polymorphisms and elucidating polygenic architecture associated with adverse reactions due to rituximab
识别遗传多态性并阐明与利妥昔单抗不良反应相关的多基因结构
  • 批准号:
    22K15910
  • 财政年份:
    2022
  • 资助金额:
    $ 425.46万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidating the Genetic Architecture of Metabolic and Reproductive PCOS Subtypes in Diverse Populations
阐明不同人群代谢和生殖 PCOS 亚型的遗传结构
  • 批准号:
    10223397
  • 财政年份:
    2020
  • 资助金额:
    $ 425.46万
  • 项目类别:
Elucidating the Genetic Architecture of Metabolic and Reproductive PCOS Subtypes in Diverse Populations
阐明不同人群代谢和生殖 PCOS 亚型的遗传结构
  • 批准号:
    10058580
  • 财政年份:
    2020
  • 资助金额:
    $ 425.46万
  • 项目类别:
Elucidating the Genetic Architecture of Metabolic and Reproductive PCOS Subtypes in Diverse Populations
阐明不同人群代谢和生殖 PCOS 亚型的遗传结构
  • 批准号:
    10405096
  • 财政年份:
    2020
  • 资助金额:
    $ 425.46万
  • 项目类别:
Elucidating the Genetic Architecture of Metabolic and Reproductive PCOS Subtypes in Diverse Populations
阐明不同人群代谢和生殖 PCOS 亚型的遗传结构
  • 批准号:
    10632022
  • 财政年份:
    2020
  • 资助金额:
    $ 425.46万
  • 项目类别:
Elucidating the genetic architecture of cystic kidney disease using whole-genome sequencing
使用全基因组测序阐明囊性肾病的遗传结构
  • 批准号:
    MR/S021329/1
  • 财政年份:
    2019
  • 资助金额:
    $ 425.46万
  • 项目类别:
    Fellowship
Elucidating the microstructural and genetic risk architecture of major adolescent-onset psychiatric disorders in early life
阐明早期青少年发病的主要精神疾病的微观结构和遗传风险结构
  • 批准号:
    397001
  • 财政年份:
    2018
  • 资助金额:
    $ 425.46万
  • 项目类别:
    Fellowship Programs
Elucidating the Genetic Architecture of Age-Dependent Neurodegenerative Diseases
阐明年龄依赖性神经退行性疾病的遗传结构
  • 批准号:
    376840
  • 财政年份:
    2017
  • 资助金额:
    $ 425.46万
  • 项目类别:
    Fellowship Programs
Elucidating the Genetic Architecture of Comorbid Schizophrenia and Intellectual Disability
阐明共病精神分裂症和智力障碍的遗传结构
  • 批准号:
    327918
  • 财政年份:
    2014
  • 资助金额:
    $ 425.46万
  • 项目类别:
    Studentship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了