Collaborative Research: Ultra-high Performance Carbon Nanotube ?Parallel Nanotube Architectures? (PNAs) for On-chip Gigascale Local and Global Interconnects
合作研究:超高性能碳纳米管?平行纳米管架构?
基本信息
- 批准号:0925566
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research is to address and resolve certain critical problems of on-chip interconnects in future microprocessors that threaten to impede the progress of the microelectronics industry in less than a decade. Feasible revolutionary alternatives to overcome some of those impediments using carbon nanotube architectures are proposed. The approach is to develop highly organized ultra-high performance carbon nanotube architectures that can potentially replace and outperform existing technologies for extremely narrow (below 22 nanometers) future interconnects. Although industrial technology roadmaps have envisaged that carbon nanotube architectures will comprehensively outperform present interconnect technologies in several ways, there has been little progress in their development and integration. A synergy of multidisciplinary intellectually stimulating concepts and their resulting inventions by the investigators, this program will bridge a crucial technological gap in the microprocessor industry. The anticipated revolutionary interconnect structures developed in this research program are expected to meet or exceed technology roadmap projections and could facilitate the continuing progress of microprocessor industries. The most fruitful impact of this program will be in educating and training a young pool of researchers (from high-school to graduate students) with appropriate skill sets needed for tackling cutting-edge technological issues in nano/microelectronics industries. The development of advanced course materials, short-term research modules and signature educational programs such as Application of Nanoscale Industrial Materials for Advanced Technology and Education (ANIMATE) will stimulate students towards advanced research and education at an early stage, which will play a key role in reversing the lack of adequate representation from diverse backgrounds.
这项研究的目的是解决和解决未来微处理器中芯片互连的某些关键问题,这些问题可能会在不到十年的时间里阻碍微电子行业的进步。提出了使用碳纳米管结构来克服其中一些障碍的可行的革命性替代方案。方法是开发高度组织的超高性能碳纳米管体系结构,这种体系结构有可能取代并超越现有技术,用于极窄(低于22纳米)的未来互连。尽管工业技术路线图设想碳纳米管架构将在几个方面全面超越目前的互连技术,但它们的开发和集成进展甚微。该计划是多学科智力刺激概念及其由研究人员发明的结果的协同,将弥合微处理器行业的一个关键技术差距。在这项研究计划中开发的预期革命性互连结构预计将达到或超过技术路线图的预测,并可能促进微处理器行业的持续进步。该计划最有成效的影响将是教育和培训一批年轻的研究人员(从高中到研究生),他们拥有解决纳米/微电子行业尖端技术问题所需的适当技能。开发高级课程材料、短期研究模块和标志性教育计划,如先进技术和教育应用纳米级工业材料(动画),将刺激学生在早期阶段进行高级研究和教育,这将在扭转缺乏来自不同背景的充分代表方面发挥关键作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yung Joon Jung其他文献
Advanced SERS sensor with horizontally aligned sub-5 nm silicon nanowires and high-density silver nanoparticles for ultra-sensitive molecular analysis
用于超灵敏分子分析的具有水平排列的亚5纳米硅纳米线和高密度银纳米粒子的先进表面增强拉曼光谱(SERS)传感器
- DOI:
10.1016/j.bios.2025.117633 - 发表时间:
2025-10-15 - 期刊:
- 影响因子:10.500
- 作者:
Peiyun Feng;Juyeon Seo;Jianlin Li;Hyun Young Jung;Yung Joon Jung - 通讯作者:
Yung Joon Jung
Bundling effect of semiconductor-enriched single-walled carbon nanotube networks on field-effect transistor performance
- DOI:
10.1016/j.mssp.2024.109174 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:
- 作者:
Juyeon Seo;Seung Hun Park;Jianlin Li;Sanghyun Hong;Young Lae Kim;Byungjin Cho;Hak Soo Choi;Yung Joon Jung - 通讯作者:
Yung Joon Jung
Investigation of electrical transport in hydrogenated multiwalled carbon nanotubes
- DOI:
10.1016/j.physb.2010.12.009 - 发表时间:
2011-02-15 - 期刊:
- 影响因子:
- 作者:
Adam L. Friedman;Hyunkyung Chun;Don Heiman;Yung Joon Jung;Latika Menon - 通讯作者:
Latika Menon
Yung Joon Jung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yung Joon Jung', 18)}}的其他基金
PFI:AIR-TT: Design and Development of High-performance Miniature Radiation Detectors using Ultrasensitive Graphene and Carbon Nanotube ion Sensors
PFI:AIR-TT:使用超灵敏石墨烯和碳纳米管离子传感器设计和开发高性能微型辐射探测器
- 批准号:
1701043 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
DMREF: Engineering Strong, Highly Conductive Nanotube Fibers Via Fusion
DMREF:通过融合工程设计坚固、高导电的纳米管纤维
- 批准号:
1434824 - 财政年份:2014
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Highly Organized Two and Three Dimensional Singlewalled Carbon Nanotubes- Polymer Hybrid Structures for Diverse Flexible Devices and Systems
用于多种柔性器件和系统的高度组织的二维和三维单壁碳纳米管-聚合物杂化结构
- 批准号:
0927088 - 财政年份:2009
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
NER: Controlled Synthesis of Hierarchical One-Dimensional Heterostructures for Nanodevice Applications
NER:用于纳米器件应用的分层一维异质结构的受控合成
- 批准号:
0708541 - 财政年份:2007
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323415 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341237 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323414 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
- 批准号:
2327571 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Exploring the Role of Ultra-Soft Inclusions in the Mechanics of Fibrous Materials
合作研究:探索超软夹杂物在纤维材料力学中的作用
- 批准号:
2235856 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Ultra-High Resolution Paleostreamflow in Southeast Asia--Proxy/Model Comparison
合作研究:东南亚超高分辨率古水流——代理/模型比较
- 批准号:
2302669 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
- 批准号:
2225900 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
- 批准号:
2327572 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329014 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant