Constrained Optimization of Markov Decision Processes

马尔可夫决策过程的约束优化

基本信息

  • 批准号:
    0928490
  • 负责人:
  • 金额:
    $ 24.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

The main research objectives of this project are to develop new algorithms and analytical tools for optimization and analysis of broad classes of controlled stochastic systems, known under the name of Markov Decision Processes, when the system performance is characterized by multiple criteria. The objective is to optimize one of the criteria under constraints on other criteria. This project will study models with the criteria of the expected total costs and the expected costs per unit time. It will be focused on finding optimal nonrandomized policies for problems with large state spaces, on developing algorithms for multi-chain problems, and on solving adaptive control problems with unknown parameters. In addition to general Markov Decision Processes, three groups of particular problems will be studied: the so-called multi-armed bandit problems that model many important managerial and operations research problems, call admission, and inventory control. If successful, the results of this project will provide efficient algorithms for computing optimal policies for important classes of stochastic systems. They will also provide descriptions of the structure of optimal policies for several groups of mathematical models of production and service systems. Currently, efficient algorithms and structural results are primarily known for problems with single objective functions. However, real-life applications usually deal with multiple criteria. This project will develop mathematical and engineering tools to control large stochastic systems for which traditional computational methods are intractable. In particular, multi-armed bandit problems to be investigated in this project have important applications to scheduling, pharmaceutical research, project management, and economics.
该项目的主要研究目标是开发新的算法和分析工具,用于优化和分析广泛类别的受控随机系统,即马尔可夫决策过程,当系统性能具有多个标准特征时。目标是在其他标准的约束下优化其中一个标准。本项目将研究具有预期总成本和单位时间预期成本标准的模型。它将专注于寻找具有大状态空间的问题的最佳非随机策略,开发多链问题的算法,以及解决具有未知参数的自适应控制问题。除了一般的马尔可夫决策过程之外,还将研究三组特殊问题:所谓的多臂强盗问题,它模拟了许多重要的管理和运筹学问题,呼叫准入和库存控制。如果成功,这个项目的结果将为计算重要类别的随机系统的最优策略提供有效的算法。他们还将为几组生产和服务系统的数学模型提供最优政策结构的描述。目前,高效算法和结构化结果主要用于具有单一目标函数的问题。然而,现实生活中的应用程序通常要处理多个标准。该项目将开发数学和工程工具来控制传统计算方法难以处理的大型随机系统。特别是本课题所研究的多武装盗匪问题,在调度、医药研究、项目管理和经济学等方面具有重要的应用价值。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eugene Feinberg其他文献

Probability methods in business and industry in honor of Benjamin Avi-Itzhak and Matthew J. Sobel
  • DOI:
    10.1007/s10479-022-04928-5
  • 发表时间:
    2022-09-26
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Eugene Feinberg;Michael N. Katehakis;Floske Spieksma
  • 通讯作者:
    Floske Spieksma

Eugene Feinberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eugene Feinberg', 18)}}的其他基金

New Methodologies for Markov Decision Processes and Stochastic Games Motivated by Inventory Control
库存控制驱动的马尔可夫决策过程和随机博弈的新方法
  • 批准号:
    1636193
  • 财政年份:
    2016
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Computationally Efficient Algorithms for Markov Decision Processes
马尔可夫决策过程的计算高效算法
  • 批准号:
    1335296
  • 财政年份:
    2013
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncountable Markov Decision Processes and their Applicatioins to Optimization of Large-Scale Stochastic Systems
协作研究:不可数马尔可夫决策过程及其在大规模随机系统优化中的应用
  • 批准号:
    0900206
  • 财政年份:
    2009
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Markov Decision Processes and Discrete Optimization
马尔可夫决策过程和离散优化
  • 批准号:
    0600538
  • 财政年份:
    2006
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Optimization of Jump Stochastic Systems
跳跃随机系统的优化
  • 批准号:
    0300121
  • 财政年份:
    2003
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant
Optimization of Jump Stochastic Systems: Undiscounted Criteria and Applications
跳跃随机系统的优化:无折扣准则和应用
  • 批准号:
    9908258
  • 财政年份:
    1999
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant
Optimization of Jump Stochastic Systems
跳跃随机系统的优化
  • 批准号:
    9500746
  • 财政年份:
    1995
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Structural Estimation and Optimization for Partially Observable Markov Decision Processes and Markov Games
职业:部分可观察马尔可夫决策过程和马尔可夫博弈的结构估计和优化
  • 批准号:
    2236477
  • 财政年份:
    2023
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Optimization of Markov Chain Monte Carlo Schemes with Spectral Gap Estimation
具有谱间隙估计的马尔可夫链蒙特卡罗方案优化
  • 批准号:
    2311307
  • 财政年份:
    2023
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Adaptive Gaussian Markov Random Fields for Large-scale Discrete Optimization via Simulation
协作研究:通过仿真实现大规模离散优化的自适应高斯马尔可夫随机场
  • 批准号:
    2243210
  • 财政年份:
    2022
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Deep Neural Networks for Solving Non-Markov Optimization Problems
用于解决非马尔可夫优化问题的深度神经网络
  • 批准号:
    2124846
  • 财政年份:
    2021
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Adaptive Gaussian Markov Random Fields for Large-scale Discrete Optimization via Simulation
协作研究:通过仿真实现大规模离散优化的自适应高斯马尔可夫随机场
  • 批准号:
    1854659
  • 财政年份:
    2019
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Deep Neural Networks for Solving Non-Markov Optimization Problems
用于解决非马尔可夫优化问题的深度神经网络
  • 批准号:
    1907518
  • 财政年份:
    2019
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant
Approximate Optimization Algorithms with Theoretical Rationales in Markov Decision Processes
马尔可夫决策过程中具有理论依据的近似优化算法
  • 批准号:
    19K04904
  • 财政年份:
    2019
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Adaptive Gaussian Markov Random Fields for Large-scale Discrete Optimization via Simulation
协作研究:通过仿真实现大规模离散优化的自适应高斯马尔可夫随机场
  • 批准号:
    1854562
  • 财政年份:
    2019
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Dynamic Optimization for Solving Large-Scale Markov Games and Social System Design
求解大规模马尔可夫博弈的动态优化与社会系统设计
  • 批准号:
    17K12644
  • 财政年份:
    2017
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Collaborative Research: Uncountable Markov Decision Processes and their Applications to Optimization of Large-Scale Stochastic Systems
协作研究:不可数马尔可夫决策过程及其在大规模随机系统优化中的应用
  • 批准号:
    0900460
  • 财政年份:
    2009
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了