Deep Neural Networks for Solving Non-Markov Optimization Problems
用于解决非马尔可夫优化问题的深度神经网络
基本信息
- 批准号:2124846
- 负责人:
- 金额:$ 27.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-15 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine learning (ML) methods have recently gained considerable attention as a set of tools that are very effective for solving large-scale optimization problems in artificial intelligence and data science. The neural network architecture that is present in many of these methods has some universal approximation properties that allow users to apply software tools with minimal preprocessing of data or tailoring of algorithms to the specifications of the problem. However, in most instances where ML works well, mathematical analysis does not yet offer a satisfactory answer to the fundamental question: Why is a machine learning method so effective for solving this problem? The aim of this project is to investigate how ML methods can be applied to solving non-Markov dynamic programs (DPs), and to answer this fundamental question for some specific problems in this area. Graduate students participate in the research of the project.The investigator analyzes a new method for solving non-Markov DPs, wherein a policy-approximation function is obtained by training a system of neural networks. The main idea is similar to recently-developed methods for solving high-dimensional backward stochastic differential equations (BSDEs), wherein the so-called Deep BSDE Solver learns a function of a high-dimensional input to approximate the optimal control for a Markovian DP. The aims of this project differ from those of other work because the focus is non-Markov DPs and the hurdles that come from path dependence. Issues that are explored in depth include the level of accuracy needed in the training set generated by a Monte Carlo particle method, and the role that implicit regularization plays in the TensorFlow algorithms. The project also considers more conventional theoretical concepts that may provide proof of this method's general effectiveness, such as the Kolmogorov-Arnold representation for continuous functions and the types of sigmoidal functions used in neural networks. The results contribute to an improved theoretical understanding of the mathematics behind Deep BSDE when applied to DPs with nonlinear filtering, and help answer important questions regarding the method?s effectiveness. Graduate students participate in the research of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习(ML)方法作为一组非常有效地解决人工智能和数据科学中的大规模优化问题的工具,最近获得了相当大的关注。这些方法中存在的神经网络架构具有一些通用的近似属性,允许用户应用软件工具,对数据进行最小的预处理或根据问题的规格定制算法。然而,在大多数机器学习运行良好的情况下,数学分析还没有为基本问题提供令人满意的答案:为什么机器学习方法对解决这个问题如此有效?该项目的目的是研究如何将机器学习方法应用于求解非马尔可夫动态规划(DPs),并针对该领域的一些具体问题回答这个基本问题。研究生参与该项目的研究。研究人员分析了一种求解非马尔可夫差分的新方法,其中通过训练神经网络系统获得策略逼近函数。其主要思想类似于最近开发的解决高维后向随机微分方程(BSDEs)的方法,其中所谓的深度BSDE求解器学习高维输入的函数来近似马尔可夫DP的最优控制。这个项目的目标与其他工作不同,因为重点是非马尔可夫DPs和来自路径依赖的障碍。深入探讨的问题包括蒙特卡罗粒子方法生成的训练集所需的精度水平,以及隐式正则化在TensorFlow算法中所起的作用。该项目还考虑了更传统的理论概念,这些概念可能为该方法的一般有效性提供证明,例如连续函数的Kolmogorov-Arnold表示和神经网络中使用的s型函数类型。当应用于具有非线性滤波的dp时,这些结果有助于提高对Deep BSDE背后数学的理论理解,并有助于回答有关该方法的重要问题。年代的有效性。研究生参与该项目的研究。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Trading Signals in VIX Futures
VIX 期货的交易信号
- DOI:10.1080/1350486x.2021.2010584
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Avellaneda, Marco;Li, Thomas Nanfeng;Papanicolaou, Andrew;Wang, Gaozhan
- 通讯作者:Wang, Gaozhan
Principal Eigenportfolios for U.S. Equities
美国股票的主要特征投资组合
- DOI:10.1137/20m1383501
- 发表时间:2022
- 期刊:
- 影响因子:1
- 作者:Avellaneda, Marco;Healy, Brian;Papanicolaou, Andrew;Papanicolaou, George
- 通讯作者:Papanicolaou, George
A Deep Neural Network Algorithm for Linear-Quadratic Portfolio Optimization With MGARCH and Small Transaction Costs
- DOI:10.1109/access.2023.3245570
- 发表时间:2023-01
- 期刊:
- 影响因子:3.9
- 作者:A. Papanicolaou;Hao Fu;P. Krishnamurthy;F. Khorrami
- 通讯作者:A. Papanicolaou;Hao Fu;P. Krishnamurthy;F. Khorrami
Consistent time‐homogeneous modeling of SPX and VIX derivatives
- DOI:10.1111/mafi.12348
- 发表时间:2018-12
- 期刊:
- 影响因子:1.6
- 作者:A. Papanicolaou
- 通讯作者:A. Papanicolaou
An optimal control strategy for execution of large stock orders using long short-term memory networks
使用长短期记忆网络执行大额股票订单的最优控制策略
- DOI:10.21314/jcf.2023.003
- 发表时间:2023
- 期刊:
- 影响因子:0.9
- 作者:Papanicolaou, Andrew;Fu, Hau;Krishnamurthy, Prasanth;Healy, Brian;Khorrami, Farshad
- 通讯作者:Khorrami, Farshad
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Papanicolaou其他文献
Cerebral mechanisms of language: magnetoencephalographic studies
- DOI:
10.1186/1744-859x-5-s1-s32 - 发表时间:
2006-02-28 - 期刊:
- 影响因子:3.100
- 作者:
Andrew Papanicolaou - 通讯作者:
Andrew Papanicolaou
What did the ancient Greek philosophers know about the relation between the mind and the brain
- DOI:
10.1016/j.neurobiolaging.2016.01.074 - 发表时间:
2016-03-01 - 期刊:
- 影响因子:
- 作者:
Andrew Papanicolaou - 通讯作者:
Andrew Papanicolaou
assessing incidental memory in patients with amnestic mild cognitive impairment (AMCI) and mild Alzheimers disease (AD): the role of hippocampal atrophy
- DOI:
10.1016/j.neurobiolaging.2016.01.129 - 发表时间:
2016-03-01 - 期刊:
- 影响因子:
- 作者:
Dionysia Kontaxopoulou;Stella Fragkiadaki;Ion Beratis;Nikolaos Andronas;Sophia Vardaki;Alexandra Economou;Andrew Papanicolaou;Sokratis Papageorgiou - 通讯作者:
Sokratis Papageorgiou
Andrew Papanicolaou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Papanicolaou', 18)}}的其他基金
Conference: 7th Eastern Conference on Mathematical Finance
会议:第七届东部数学金融会议
- 批准号:
2319419 - 财政年份:2023
- 资助金额:
$ 27.41万 - 项目类别:
Standard Grant
Deep Neural Networks for Solving Non-Markov Optimization Problems
用于解决非马尔可夫优化问题的深度神经网络
- 批准号:
1907518 - 财政年份:2019
- 资助金额:
$ 27.41万 - 项目类别:
Continuing Grant
Acquisition of Magnetic Source Imaging System for Cognitive and Educational Neuroimaging
用于认知和教育神经成像的磁源成像系统的采集
- 批准号:
0116150 - 财政年份:2001
- 资助金额:
$ 27.41万 - 项目类别:
Standard Grant
相似国自然基金
Neural Process模型的多样化高保真技术研究
- 批准号:62306326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 27.41万 - 项目类别:
Research Grant
CAREER: Reliable and Accelerated Deep Neural Networks via Co-Design of Hardware and Algorithms
职业:通过硬件和算法的协同设计实现可靠且加速的深度神经网络
- 批准号:
2340516 - 财政年份:2024
- 资助金额:
$ 27.41万 - 项目类别:
Continuing Grant
Property-Driven Quality Assurance of Adversarial Robustness of Deep Neural Networks
深度神经网络对抗鲁棒性的属性驱动质量保证
- 批准号:
23K11049 - 财政年份:2023
- 资助金额:
$ 27.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
- 批准号:
2311295 - 财政年份:2023
- 资助金额:
$ 27.41万 - 项目类别:
Continuing Grant
CAREER: Deep Neural Networks That Can See Shape From Images: Models, Algorithms, and Applications
职业:可以从图像中看到形状的深度神经网络:模型、算法和应用
- 批准号:
2239977 - 财政年份:2023
- 资助金额:
$ 27.41万 - 项目类别:
Continuing Grant
High-performance deep neural networks for medical image analysis
用于医学图像分析的高性能深度神经网络
- 批准号:
10723553 - 财政年份:2023
- 资助金额:
$ 27.41万 - 项目类别:
Imaging Epilepsy Sources with Biophysically Constrained Deep Neural Networks
使用生物物理约束的深度神经网络对癫痫源进行成像
- 批准号:
10655833 - 财政年份:2023
- 资助金额:
$ 27.41万 - 项目类别:
Collaborative Research: SaTC: CORE: Small: Understanding and Taming Deterministic Model Bit Flip attacks in Deep Neural Networks
协作研究:SaTC:核心:小型:理解和驯服深度神经网络中的确定性模型位翻转攻击
- 批准号:
2342618 - 财政年份:2023
- 资助金额:
$ 27.41万 - 项目类别:
Standard Grant
Random Matrices, Random Graphs, and Deep Neural Networks
随机矩阵、随机图和深度神经网络
- 批准号:
2331096 - 财政年份:2023
- 资助金额:
$ 27.41万 - 项目类别:
Standard Grant