Electrocorticographic Brain-Machine Interfaces for Communication and Prosthetic Control

用于通信和假肢控制的皮质电脑机接口

基本信息

  • 批准号:
    0930908
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

0930908RaoBrain-machine interfaces (BMIs) are devices that allow a subject to control objects directly using brain signals. Such devices offer the potential to significantly improve the quality of life of locked-in, paralyzed, or disabled individuals by allowing them to communicate via virtual keyboards and control prosthetic robotic devices. The two dominant paradigms for brain-machine interfacing today rely on non-invasive recording from the scalp (EEG) and invasive techniques based on intracortical implants. EEG signals are extremely noisy, thereby limiting the bandwidth of control signals that can be reliably extracted. Intracortical implants on the other hand yield stronger signals but pose serious health risks. In this proposal, the PI describes a research program for investigating BMIs based on electrocorticography (ECoG), a relatively new technique that involves recording signals subdurally from the brain surface. These signals have much higher signal-to-noise ratio than EEG signal while at the same time, pose lesser risks than techniques that penetrate the brain surface. The proposed research will address the following key issues: (1) Exploiting high frequency ECoG signals for BMI: Recent work has shown the existence of broad-spectral ECoG changes at high frequencies during movement and imagery. The PI and his team will explore the application of such ECoG modulation for multi-dimensional control in BMIs. (2) Neural plasticity of local cortical circuits during BMI: The PI's team will investigate the dynamic range of the spectral changes in ECoG and analyze the adaptations that occur due to brain plasticity during BMI control. This will help pave the way for controlling 3 or more degrees of freedom in a BMI from a single control electrode. (3) Abstraction of control signals: After extended periods of BMI use, many patients report no longer imagining moving a control limb but rather concentrating on the desired result of the BMI task itself. The PI and his team will explore the creation of new cortical communication pathways underlying such abstraction and leverage these new control signals in expanding the bandwidth of the BMI. (4) Applications of new control signals to novel BMI paradigms: The BMI techniques will be tested using virtual devices such as cursor-driven menu systems for communication as well as more complex robotic systems such as a prosthetic robotic hand and a humanoid robot. The educational component of the project involves curriculum development, interdisciplinary training for graduate and undergraduate students, and outreach to K-12 students.Intellectual Merit: The proposed research represents one of the first efforts to exploit ECoG and the brain's plasticity to build BMIs that can control devices with large degrees of freedom. The study of abstraction of control signals and its application to robotic BMIs is also novel.Broader Impact: If successful, this research will lead to new ECoG-based BMI systems that will surpass the abilities of current BMIs by relying on the brain's ability to adapt to novel control scenarios and leveraging the large-scale population-level electrical activity measured by ECoG. The project will enable the training of graduate students in a multidisciplinary environment. Promising undergraduates, including students from underrepresented groups, will gain valuable research experience in preparation for industrial and academic careers. A K-12 outreach effort will enable students from local area schools to visit the laboratories of the PIs and gain hands-on experience in the emerging field of brain-machine interfaces.
脑机接口(BMI)是允许受试者使用大脑信号直接控制物体的设备。这种设备允许被锁定、瘫痪或残疾的人通过虚拟键盘和控制假肢机器人设备进行通信,从而有可能显著提高他们的生活质量。当今两种主要的脑机接口范例依赖于非侵入性的头皮记录(EEG)和基于皮质内植入的侵入性技术。EEG信号噪声极大,从而限制了可以可靠提取的控制信号的带宽。另一方面,皮质内植入可以产生更强的信号,但会带来严重的健康风险。在这项提案中,PI描述了一项基于皮层脑电图术(ECoG)的研究计划,该研究计划基于皮层脑电图术(ECoG),这是一种相对较新的技术,涉及从大脑表面下记录信号。这些信号比脑电信号具有更高的信噪比,同时,与穿透大脑表面的技术相比,构成的风险更小。建议的研究将解决以下关键问题:(1)利用高频ECoG信号进行BMI:最近的工作表明,在运动和成像过程中,存在高频的广谱ECoG变化。PI和他的团队将探索这种ECoG调制在BMI中的多维控制应用。(2)BMI期间局部皮质环路的神经可塑性:PI的团队将调查ECoG频谱变化的动态范围,并分析在BMI控制期间由于大脑可塑性而发生的适应。这将有助于从单个控制电极控制BMI中的3个或更多个自由度。(3)控制信号的提取:在长时间使用BMI后,许多患者报告不再想象移动控制肢体,而是专注于BMI任务本身的预期结果。PI和他的团队将探索在这种抽象的基础上创建新的大脑皮层通信路径,并利用这些新的控制信号来扩展BMI的带宽。(4)将新的控制信号应用于新的BMI范例:BMI技术将使用虚拟设备进行测试,如用于通信的光标驱动菜单系统,以及更复杂的机器人系统,如假手和类人机器人。该项目的教育部分涉及课程开发、研究生和本科生的跨学科培训,以及对K-12学生的推广。智力价值:拟议的研究是利用大脑皮质脑电和大脑的可塑性来建立能够控制大自由度设备的BMI的首批努力之一。控制信号的提取及其在机器人BMI中的应用研究也是新颖的。广泛的影响:如果成功,这项研究将导致新的基于ECoG的BMI系统,它将依靠大脑适应新控制场景的能力,并利用ECoG测量的大规模人群级别的电活动,超越现有BMI的能力。该项目将使研究生能够在多学科环境中接受培训。有前途的本科生,包括来自代表性不足群体的学生,将获得宝贵的研究经验,为工业和学术生涯做准备。K-12外展工作将使当地学校的学生能够参观私人投资机构的实验室,并在新兴的脑机接口领域获得实践经验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rajesh Rao其他文献

Amorphous/crystalline silicon heterojunction solar cells via Remote plasma chemical vapor deposition: Influence of hydrogen dilution, RF power, and sample Z-height position
通过远程等离子体化学气相沉积的非晶/晶体硅异质结太阳能电池:氢气稀释、射频功率和样品 Z 高度位置的影响
Surgery: Is There a Difference Between Men and Women? Postoperative Complications Following Orthopedic Spine
手术:男性和女性之间有区别吗?
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Heyer;Na Cao;R. Amdur;Rajesh Rao
  • 通讯作者:
    Rajesh Rao
Part input into a flexible flow system: An evaluation of look-ahead simulation and a fuzzy rule base
Gómez-López-Hernández syndrome: a case report on pediatric neurotrophic corneal ulcers and review of the literature
  • DOI:
    10.1016/j.jaapos.2021.08.299
  • 发表时间:
    2021-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jonathan Chao;Rajesh Rao;Chirag Gupta
  • 通讯作者:
    Chirag Gupta
Mo1504: IN SILICO EVALUATION AND PRE-CLINICAL EFFICACY OF ANTI-TNF AND ANTI-IL-23 COMBINATION THERAPY IN INFLAMMATORY BOWEL DISEASE
  • DOI:
    10.1016/s0016-5085(22)61876-6
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jacqueline Perrigoue;Luciana R. Muniz-Bongers;Luvena L. Ong;Yanqing Chen;Leon Chang;Karen Ngo;Aleksandar Stojmirovic;Christopher D. O’Brien;Matthew Germinaro;Rajesh Rao;Marion Vetter;Jennifer Towne
  • 通讯作者:
    Jennifer Towne

Rajesh Rao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rajesh Rao', 18)}}的其他基金

RI: Small: Probabilistic Goal-Based Imitation Learning
RI:小:基于概率目标的模仿学习
  • 批准号:
    1318733
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NSF Engineering Research Center for Sensorimotor Neural Engineering
NSF 感觉运动神经工程工程研究中心
  • 批准号:
    1028725
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Cooperative Agreement
Exploring the Neural Dynamics of Cognition through Human Electrocorticography
通过人体皮层电图探索认知的神经动力学
  • 批准号:
    0642848
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
BIC: Probabilistic Neural Computation: Models and Applications in Robotics and Brain-Machine Interfaces
BIC:概率神经计算:机器人和脑机接口中的模型和应用
  • 批准号:
    0622252
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Probabilistic Imitation Learning in Infants and Robots
婴儿和机器人的概率模仿学习
  • 批准号:
    0413335
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Neurally Inspired Active Vision: Theory, Models, and Applications in Mobile Robotics
职业:神经启发主动视觉:移动机器人的理论、模型和应用
  • 批准号:
    0133592
  • 财政年份:
    2002
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Adaptive Neurally-Inspired Computing: Models, Algorithms, and Silicon-Based Architectures
自适应神经启发计算:模型、算法和基于硅的架构
  • 批准号:
    0130705
  • 财政年份:
    2001
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Sitagliptin通过microbiota-gut-brain轴在2型糖尿病致阿尔茨海默样变中的脑保护作用机制
  • 批准号:
    81801389
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
平扫描数据导引的超低剂量Brain-PCT成像新方法研究
  • 批准号:
    81101046
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

高精度で簡便なBrain-Machine Interface適性データベース
高度准确且简单的脑机接口能力倾向数据库
  • 批准号:
    24K02990
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
  • 批准号:
    EP/Y021614/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
CAREER: Exploring Mixed-Signal Computation for Energy-Efficient and Robust Brain-Machine Interfaces
职业:探索节能且鲁棒的脑机接口的混合信号计算
  • 批准号:
    2338159
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
NCS-FR: Insect-based brain-machine interfaces and robots for understanding odor-driven navigation
NCS-FR:基于昆虫的脑机接口和机器人,用于理解气味驱动的导航
  • 批准号:
    2319060
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Acquisition-independent machine learning for morphometric analysis of underrepresented aging populations with clinical and low-field brain MRI
独立于采集的机器学习,通过临床和低场脑 MRI 对代表性不足的老龄化人群进行形态计量分析
  • 批准号:
    10739049
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Next generation closed-loop brain-machine interfaces
下一代闭环脑机接口
  • 批准号:
    LP220100256
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Linkage Projects
Enabling the Assessment of Fetal Brain Development and Degeneration with Machine Learning
通过机器学习评估胎儿大脑发育和退化
  • 批准号:
    10659817
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Accurate, reliable, and interpretable machine learning for assessment of neonatal and pediatric brain micro-structure
准确、可靠且可解释的机器学习,用于评估新生儿和儿童大脑微结构
  • 批准号:
    10566299
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
A Machine Learning Algorithm to Assess Functional "Brain Age" from an In-Home EEG Sleepband
一种通过家用脑电图睡眠带评估功能性“大脑年龄”的机器学习算法
  • 批准号:
    10820286
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了