CPS: Medium: Learning to Sense Robustly and Act Effectively

CPS:中:学习稳健感知并有效行动

基本信息

项目摘要

The physical environment of a cyber-physical system is unboundedly complex, changing continuously in time and space. An embodied cyber-physical system, embedded in the physical world, will receive a high bandwidth stream of sensory information, and may have multiple effectors with continuous control signals. In addition to dynamic change in the world, the properties of the cyber-physical system itself ? its sensors and effectors ? change over time. How can it cope with this complexity? The hypothesis behind this proposal is that a successful cyber-physical system will need to be a learning agent, learning the properties of its sensors, effectors, and environment from its own experience, and adapting over time. Inspired by human developmental learning, the assertion is that foundational concepts such as Space, Object, Action, etc., are essential for such a learning agent to abstract and control the complexity of its world. To bridge the gap between continuous interaction with the physical environment, and discrete symbolic descriptions that support effective planning, the agent will need multiple representations for these foundational domains, linked by abstraction relations. To achieve this, the team is developing the Object Semantic Hierarchy (OSH), which shows how a learning agent can create a hierarchy of representations for objects it interacts with. The OSH shows how the ?object abstraction? factors the uncertainty in the sensor stream into object models and object trajectories. These object models then support the creation of action models, abstracting from low-level motor signals. To ensure generality across cyber-physical systems, these methods make only very generic assumptions about the nature of the sensors, effectors, and environment. However, to provide a physical test bed for rapid evaluation and refinement of our methods, the team has designed a model laboratory robotic system to be built from off-the-shelf components, including a stereo camera, a pan-tilt-translate base, and a manipulator arm. For dissemination and replication of research results, the core system will be affordable and easily duplicated at other labs. There are plans to distribute the plans, the control software, and the software for experiments, to encourage other labs to replicate and extend the work. The same system will serve as a platform for an open-ended set of undergraduate laboratory tasks, ranging from classroom exercises, to term projects, to independent study projects. There is a preliminary design for a very inexpensive version of the model cyberphysical system that can be constructed from servo motors and pan-tilt webcams, for use in collaborating high schools and middle schools, to communicate the breadth and excitement of STEM research.
网络物理系统的物理环境是无限复杂的,在时间和空间上不断变化。嵌入在物理世界中的具体化的信息物理系统将接收高带宽的感官信息流,并且可以具有多个具有连续控制信号的效应器。除了世界的动态变化,网络物理系统本身的属性?它的传感器和效应器随着时间的推移而改变。它如何科普这种复杂性?这一提议背后的假设是,一个成功的网络物理系统需要成为一个学习代理,从自己的经验中学习其传感器,效应器和环境的属性,并随着时间的推移而适应。受人类发展学习的启发,主张空间、物体、动作等基本概念,对于这样一个学习主体来说,抽象和控制其世界的复杂性是必不可少的。为了弥合与物理环境的连续交互与支持有效规划的离散符号描述之间的差距,代理将需要通过抽象关系链接的这些基础域的多个表示。 为了实现这一目标,该团队正在开发对象语义层次(奥什),它展示了学习代理如何为与之交互的对象创建表示层次。奥什说明如何?对象抽象?将传感器流中的不确定性分解为对象模型和对象轨迹。这些对象模型然后支持动作模型的创建,从低级运动信号中抽象出来。为了确保信息物理系统的通用性,这些方法只对传感器、效应器和环境的性质做出非常一般的假设。然而,为了提供一个快速评估和改进我们的方法的物理测试平台,该团队设计了一个模型实验室机器人系统,该系统将由现成的组件构建,包括立体相机,平移-倾斜-平移底座和机械臂。为了传播和复制研究结果,核心系统将是负担得起的,并且很容易在其他实验室复制。有计划分发计划,控制软件和实验软件,以鼓励其他实验室复制和扩展工作。同样的系统将作为一个开放式的本科实验室任务,从课堂练习,学期项目,独立的研究项目的平台。有一个非常便宜的网络物理系统模型的初步设计,可以由伺服电机和云台网络摄像头构成,用于合作高中和中学,以传达STEM研究的广度和兴奋。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Kuipers其他文献

Cognitive Maps for Planetary Rovers
  • DOI:
    10.1023/a:1012463728877
  • 发表时间:
    2001-11-01
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Benjamin Kuipers
  • 通讯作者:
    Benjamin Kuipers
VIRTUAL ROUNDTABLE
虚拟圆桌会议
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Koopman;Benjamin Kuipers;William H. Widen;Marilyn Wolf
  • 通讯作者:
    Marilyn Wolf
Dealing with uncertainty, risks, and tradeoffs in clinical decisions. A cognitive science approach.
处理临床决策中的不确定性、风险和权衡。
  • DOI:
    10.7326/0003-4819-108-3-435
  • 发表时间:
    1988
  • 期刊:
  • 影响因子:
    39.2
  • 作者:
    Alan J. Moskowitz;Benjamin Kuipers;J. P. Kassirer
  • 通讯作者:
    J. P. Kassirer

Benjamin Kuipers的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Kuipers', 18)}}的其他基金

RI: Small: Robot Developmental Learning of Skilled Actions
RI:小:机器人技能动作的发展学习
  • 批准号:
    1421168
  • 财政年份:
    2014
  • 资助金额:
    $ 145.07万
  • 项目类别:
    Standard Grant
EAGER: Memory-based learning of effective actions
EAGER:基于记忆的有效行动学习
  • 批准号:
    1252987
  • 财政年份:
    2012
  • 资助金额:
    $ 145.07万
  • 项目类别:
    Standard Grant
HCC: Large: Collaborative Research: Human-Robot Dialog for Collaborative Navigation Tasks
HCC:大型:协作研究:用于协作导航任务的人机对话
  • 批准号:
    1111494
  • 财政年份:
    2011
  • 资助金额:
    $ 145.07万
  • 项目类别:
    Standard Grant
RI: Robot developmental learning of objects, actions, and tools
RI:机器人对物体、动作和工具的发展学习
  • 批准号:
    0713150
  • 财政年份:
    2007
  • 资助金额:
    $ 145.07万
  • 项目类别:
    Continuing Grant
SGER: A Simulation Platform for Research on Developmental Robotics
SGER:发育机器人研究仿真平台
  • 批准号:
    0750011
  • 财政年份:
    2007
  • 资助金额:
    $ 145.07万
  • 项目类别:
    Standard Grant
Learning the Sensorimotor Foundation for Spatial Reasoning
学习空间推理的感觉运动基础
  • 批准号:
    0413257
  • 财政年份:
    2005
  • 资助金额:
    $ 145.07万
  • 项目类别:
    Continuing Grant
Artificial Intelligence: An Academic Genealogy
人工智能:学术谱系
  • 批准号:
    0538927
  • 财政年份:
    2005
  • 资助金额:
    $ 145.07万
  • 项目类别:
    Standard Grant
CISE Research Instrumentation: Robotics Equipment for Research on Assistive Intelligence
CISE 研究仪器:用于辅助智能研究的机器人设备
  • 批准号:
    9617327
  • 财政年份:
    1997
  • 资助金额:
    $ 145.07万
  • 项目类别:
    Standard Grant
An Ontological Hierarchy for Spatial Knowledge
空间知识的本体层次结构
  • 批准号:
    9504138
  • 财政年份:
    1995
  • 资助金额:
    $ 145.07万
  • 项目类别:
    Continuing Grant
Qualitative Design and Verification of Heterogeneous Controllers
异构控制器的定性设计与验证
  • 批准号:
    9216584
  • 财政年份:
    1993
  • 资助金额:
    $ 145.07万
  • 项目类别:
    Standard Grant

相似海外基金

CPS: Medium: Federated Learning for Predicting Electricity Consumption with Mixed Global/Local Models
CPS:中:使用混合全局/本地模型预测电力消耗的联合学习
  • 批准号:
    2317079
  • 财政年份:
    2024
  • 资助金额:
    $ 145.07万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311084
  • 财政年份:
    2023
  • 资助金额:
    $ 145.07万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
  • 批准号:
    2312092
  • 财政年份:
    2023
  • 资助金额:
    $ 145.07万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
  • 批准号:
    2401007
  • 财政年份:
    2023
  • 资助金额:
    $ 145.07万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
  • 批准号:
    2235231
  • 财政年份:
    2023
  • 资助金额:
    $ 145.07万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223987
  • 财政年份:
    2023
  • 资助金额:
    $ 145.07万
  • 项目类别:
    Standard Grant
CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
  • 批准号:
    2241796
  • 财政年份:
    2023
  • 资助金额:
    $ 145.07万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223985
  • 财政年份:
    2023
  • 资助金额:
    $ 145.07万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223986
  • 财政年份:
    2023
  • 资助金额:
    $ 145.07万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311087
  • 财政年份:
    2023
  • 资助金额:
    $ 145.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了