SOLAR: Programming the Self-Assembly of Matter for Solar Energy Conversion
太阳能:对太阳能转换的物质自组装进行编程
基本信息
- 批准号:0935165
- 负责人:
- 金额:$ 166.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The grand challenge in efficiently harvesting and converting solar radiation into electricity lies in engineering materials on multiple length scales with architectures that direct the flow of energy and the transfer and transport of charge, as in naturally occurring light harvesting systems. Organic-inorganic hybrids, prepared from functional, electro-active organic and nanostructured inorganic materials, combine desirable and tunable chemical and physical properties of the constituent organic and inorganic building blocks in a single composite, making them promising systems for solar technologies. Hybrid materials incorporate the low-cost, large-area processing and high absorbance and quantum efficiencies of organic materials with the adjustable optical properties, high carrier conductivities, and good photostability of inorganic nanostructures. Solar photovoltaic and luminescent solar concentrator technologies will be dramatically advanced if the organic and inorganic building blocks of hybrid structures can be positioned and oriented on the nanometer scale to regulate the competitive processes of charge transfer and transport, emission, and energy transfer. Hybrid organic-inorganic materials promise one of the best architectures for ultra-low-cost photovoltaic devices. Currently, the efficiency of hybrid photovoltaic devices is limited by the availability of red-absorbing, high-mobility organic and inorganic components (to match the solar spectrum and efficiently collect charge) and of composites with structures that achieve high surface area junctions, yet form well-connected organic and inorganic pathways. This project aims to produce significantly improved hybrid structures for photovoltaics. Improved hybrid materials may also enable creation of high-efficiency luminescent solar concentrators, which currently are limited in performance by materials challenges; organic and inorganic materials alone have not been found to satisfy the broad-spectrum collection, near-unity photoluminescence efficiency, low re-absorption, and good photostability required. This project brings together advances in chemical synthesis, mathematical modeling, and self-organization to control the position and orientation of organic and inorganic building blocks, exploiting advances at the frontier of chemistry, materials science, and mathematics. We will combine precisely controlled 1) molecular and supramolecular dendrimeric systems tailored to assemble with different structural motifs and 2) nanocrystals of tunable size, shape, and composition that self-assemble into single and multi-component superlattices. Structural, optical, and electrical probes will be combined with mathematical modeling of the effects of interface geometry to optimize charge transfer and transport, emission, and energy transfer. The results will enable engineering of organic-inorganic materials that will be integrated in photovoltaic devices and luminescent solar concentrators.More broadly, the research program will develop new synthetic methods and mathematical formalisms for the self-assembly of hybrid materials with tailored architectures that is important to provide materials with superior structural, electronic, and optical properties. These materials have applications in imaging, therapeutics, and information technology, in addition to energy harvesting. The project's emphasis on mathematical techniques for engineered self-assembling systems offers the potential for impact in robotics and biological systems. The project will also electronically and optically probe and establish mathematical models of the behavior of organic-inorganic heterojunctions key to their application in a range of electronic and optical devices.
有效地收集太阳辐射并将其转换为电能的巨大挑战在于在多个长度尺度上设计材料,其结构可以引导能量的流动以及电荷的转移和传输,就像自然发生的光收集系统一样。有机-无机杂化物由功能性电活性有机材料和纳米结构无机材料制备,联合收割机在单一复合材料中结合了组成有机和无机结构单元的所需和可调的化学和物理性质,使其成为太阳能技术的有前途的系统。杂化材料将有机材料的低成本、大面积加工和高吸收率和量子效率与无机纳米结构的可调光学性质、高载流子电导率和良好的光稳定性结合在一起。如果混合结构的有机和无机构建块能够在纳米尺度上定位和定向,以调节电荷转移和传输、发射和能量转移的竞争过程,那么太阳能光伏和发光太阳能集中器技术将得到极大的进步。有机-无机杂化材料有望成为超低成本光伏器件的最佳架构之一。 目前,混合光伏器件的效率受到红色吸收、高迁移率有机和无机组分(以匹配太阳光谱并有效地收集电荷)以及具有实现高表面积结的结构的复合材料的可用性的限制,但形成良好连接的有机和无机路径。该项目旨在生产用于光化学的显著改进的混合结构。 改进的混合材料还可以使得能够产生高效发光太阳能集中器,其目前在性能上受到材料挑战的限制;尚未发现单独的有机和无机材料满足所需的广谱收集、接近统一的光致发光效率、低再吸收和良好的光稳定性。该项目汇集了化学合成,数学建模和自组织方面的进展,以控制有机和无机构建块的位置和方向,利用化学,材料科学和数学前沿的进展。我们将结合联合收割机精确控制1)分子和超分子树状聚合物系统定制组装与不同的结构基序和2)可调尺寸,形状和组成的纳米晶体,自组装成单组分和多组分超晶格。结构,光学和电学探针将与界面几何形状的影响的数学建模相结合,以优化电荷转移和传输,发射和能量转移。研究结果将使有机-无机材料的工程化成为可能,这些材料将被集成到光伏器件和发光太阳能聚光器中。更广泛地说,该研究计划将开发新的合成方法和数学形式,用于具有定制结构的杂化材料的自组装,这对于提供具有上级结构,电子和光学特性的材料至关重要。除了能量收集之外,这些材料还可用于成像、治疗和信息技术。该项目强调工程自组装系统的数学技术,为机器人和生物系统提供了潜在的影响。该项目还将以电子和光学方式探测并建立有机-无机异质结行为的数学模型,这些异质结是其在一系列电子和光学器件中应用的关键。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cherie Kagan其他文献
Cherie Kagan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cherie Kagan', 18)}}的其他基金
NSF Engineering Research Center for the Internet of Things for Precision Agriculture (IoT4Ag)
NSF 精准农业物联网工程研究中心 (IoT4Ag)
- 批准号:
1941529 - 财政年份:2020
- 资助金额:
$ 166.15万 - 项目类别:
Cooperative Agreement
COLLABORATIVE: Biomimetic Entropic Patterning (BEP) of Nanobiosensors
合作:纳米生物传感器的仿生熵模式(BEP)
- 批准号:
1804523 - 财政年份:2018
- 资助金额:
$ 166.15万 - 项目类别:
Standard Grant
Template-based Fabrication of Three-dimensional, Chiral Plasmonic Nanostructures
基于模板的三维手性等离子体纳米结构的制造
- 批准号:
1562884 - 财政年份:2016
- 资助金额:
$ 166.15万 - 项目类别:
Standard Grant
Designing the Electronic Properties of PbSe Nanowires for Optoelectronic Devices
设计用于光电器件的 PbSe 纳米线的电子特性
- 批准号:
1309053 - 财政年份:2013
- 资助金额:
$ 166.15万 - 项目类别:
Continuing Grant
Engineering All-Inorganic Quantum Dot Heterojunction Photovoltaics Through Surface Chemical Manipulations
通过表面化学操作工程全无机量子点异质结光伏
- 批准号:
1236406 - 财政年份:2012
- 资助金额:
$ 166.15万 - 项目类别:
Standard Grant
MRI: Acquisition of a Nanoimprintor for Nanotechnology, Energy and Bioengineering Research, Education and Training
MRI:收购纳米压印机用于纳米技术、能源和生物工程研究、教育和培训
- 批准号:
1040215 - 财政年份:2010
- 资助金额:
$ 166.15万 - 项目类别:
Standard Grant
Engineering Organic-Inorganic Hybrid Materials for the Conversion of Solar Energy
用于太阳能转换的工程有机-无机杂化材料
- 批准号:
0854226 - 财政年份:2009
- 资助金额:
$ 166.15万 - 项目类别:
Standard Grant
Shape-Dependent Electronic and Optical Properties in Semiconductor Nanowires
半导体纳米线中形状相关的电子和光学特性
- 批准号:
0805155 - 财政年份:2008
- 资助金额:
$ 166.15万 - 项目类别:
Continuing Grant
相似海外基金
Scholarships and Programming to Increase Graduation, Retention, and Self-efficacy of Low-income STEM Students
旨在提高低收入 STEM 学生毕业率、保留率和自我效能的奖学金和项目
- 批准号:
2221477 - 财政年份:2023
- 资助金额:
$ 166.15万 - 项目类别:
Standard Grant
CAREER: Three-dimensional Nanoscale Device Fabrication via Molecular Programming and DNA-based Self-assembly
职业:通过分子编程和基于 DNA 的自组装制造三维纳米器件
- 批准号:
2240000 - 财政年份:2023
- 资助金额:
$ 166.15万 - 项目类别:
Standard Grant
Investigating Recruited Lung Macrophage Programming and Turnover in Self-Limited Versus Prolonged Lung Inflammation
研究自限性与长期肺部炎症中招募的肺巨噬细胞编程和周转
- 批准号:
10749322 - 财政年份:2023
- 资助金额:
$ 166.15万 - 项目类别:
Using Fine-grained Programming Trace Data to Inform Disciplinary Models of Self-Regulated Learning in Computing Education
使用细粒度编程跟踪数据为计算机教育中的自我调节学习的学科模型提供信息
- 批准号:
2300612 - 财政年份:2023
- 资助金额:
$ 166.15万 - 项目类别:
Continuing Grant
Using Fine-grained Programming Trace Data to Inform Disciplinary Models of Self-Regulated Learning in Computing Education
使用细粒度编程跟踪数据为计算机教育中的自我调节学习的学科模型提供信息
- 批准号:
2300613 - 财政年份:2023
- 资助金额:
$ 166.15万 - 项目类别:
Continuing Grant
CRII: IIS: HCC: Interplay of Emotions and Self-Efficacy of Novice Students during Programming Tasks: A Multi-Modal Approach
CRII:IIS:HCC:编程任务期间新手学生的情绪和自我效能的相互作用:多模式方法
- 批准号:
2104729 - 财政年份:2021
- 资助金额:
$ 166.15万 - 项目类别:
Standard Grant
SaTc: EDU: Collaborative: An Assessment Driven Approach to Self-Directed Learning in Secure Programming (SecTutor)
SaTc:EDU:协作:安全编程中自我导向学习的评估驱动方法(SecTutor)
- 批准号:
1934269 - 财政年份:2019
- 资助金额:
$ 166.15万 - 项目类别:
Standard Grant
SaTc: EDU: Collaborative: An Assessment Driven Approach to Self-Directed Learning in Secure Programming (SecTutor)
SaTc:EDU:协作:安全编程中自我导向学习的评估驱动方法(SecTutor)
- 批准号:
1934279 - 财政年份:2019
- 资助金额:
$ 166.15万 - 项目类别:
Standard Grant
SaTc: EDU: Collaborative: An Assessment Driven Approach to Self-Directed Learning in Secure Programming (SecTutor)
SaTc:EDU:协作:安全编程中自我导向学习的评估驱动方法(SecTutor)
- 批准号:
1934285 - 财政年份:2019
- 资助金额:
$ 166.15万 - 项目类别:
Standard Grant
Evolving Self-Adaptive Particle Swarm Optimization Techniques using Genetic Programming
使用遗传编程进化自适应粒子群优化技术
- 批准号:
460647-2014 - 财政年份:2017
- 资助金额:
$ 166.15万 - 项目类别:
Postgraduate Scholarships - Doctoral