Engineering All-Inorganic Quantum Dot Heterojunction Photovoltaics Through Surface Chemical Manipulations
通过表面化学操作工程全无机量子点异质结光伏
基本信息
- 批准号:1236406
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Kagan, CherieProposal Number: 1236406Institution: University of PennsylvaniaTitle: Engineering All-Inorganic Quantum Dot Heterojunction Photovoltaics Through Surface Chemical ManipulationsColloidal semiconductor quantum (QDs) promise low-cost, large-area, high performance solar photovoltaics (PVs) as they may be processed from solution like inks and they have size, shape, and composition-dependent electronic and optical properties uniquely allowing the design and fabrication of all-inorganic materials from nanoscale building blocks. The challenge is to harness the prized electronic properties of these solution-processable QDs in solid thin films where facile charge transport and doping are required to engineer junctions for efficient solar PVs and more broadly for semiconductor electronic and optoelectronic devices. The large area surface (to volume), stoichiometric balance, and coupling between QDs greatly affect charge carrier type and transport in QD solid thin films. This project will carry out chemical transformations to manipulate the surface chemistry and stoichiometry of QDs in solid state thin films while probing in-situ their surface chemistry and electrical properties to design high mobility, n- and p-type QD thin films and high efficiency pn heterojunction PVs. For example, wet-chemical synthetic methods yield macroscopic quantities of colloidal semiconductor QDs that may be tailored in size, shape, and composition and deposited like inks by spin- casting and dip-coating to form large-area, uniform QD thin films. Here, the PI will exchange the QDs in thin films using the recently developed ammonium thiocyanate treatment to form strongly electronically coupled and nearly bare QDs, providing sites for subsequent chemical transformations. Electrochemical, optical and electrical measurements will be used to characterize the energy levels and carrier type, trapping, and mobility as we modify QD films. High mobility, long carrier lifetime QD films with electronic structures tailored to define large junction offsets will be integrated into solar cells and optimized to form broad band, high absorption QD films for efficient solar PVs.The proposed research activities will develop understanding of the role of surface, stoichiometry, and extrinsic atoms in weakly quantum confined, wider band gap and more strongly quantum confined, smaller band gap QDs. The role of the surface is important in designing high carrier mobility, n- and p-type materials that impact not only solar photovoltaics, but the design of a broad range of sustainable electronic and optoelectronic devices; low-power electronics, energy harvesting thermoelectrics, and low-power light-emitting diodes; pursued from solution-processable QD materials. The fundamental understanding and technological developments will expand knowledge and teaching of nanostructured materials and of processes for chemical transformations and design of materials, applicable to the growing toolbox of nanostructured materials. The program will provide an interdisciplinary research experience for undergraduate and graduate students. It will also provide an opportunity for the students and PI to share the science and engineering of sustainable and nanoscale technologies with K-12 students and teachers, the public, and the scientific community through demos, presentations, and formal and extramural coursework.
主要研究者:Kagan,Cherie提案编号:1236406机构:宾夕法尼亚大学职称:胶体半导体量子点(QD)有望成为低成本、大面积、高性能的太阳能光致发光材料(PV),因为它们可以从类似墨水的溶液中加工,并且它们具有尺寸、形状、和组成依赖的电子和光学性质,独特地允许从纳米级构建块设计和制造全无机材料。挑战在于利用固体薄膜中这些可溶液加工的QD的珍贵电子特性,其中需要容易的电荷传输和掺杂来设计用于高效太阳能PV的结,以及更广泛地用于半导体电子和光电器件。量子点固体薄膜的大面积比表面积、化学计量平衡以及量子点之间的耦合对量子点固体薄膜中载流子的类型和输运有很大影响。该项目将进行化学转化,以操纵固态薄膜中QD的表面化学和化学计量,同时原位探测其表面化学和电学性质,以设计高迁移率,n型和p型QD薄膜和高效pn异质结PV。 例如,湿化学合成方法产生宏观量的胶体半导体QD,其可以在尺寸、形状和组成上定制并且通过旋涂和浸涂像油墨一样沉积以形成大面积均匀QD薄膜。在这里,PI将使用最近开发的硫氰酸铵处理来交换薄膜中的QD,以形成强电子耦合和几乎裸露的QD,为随后的化学转化提供位点。 电化学,光学和电学测量将被用来表征的能级和载流子类型,陷阱,和流动性,因为我们修改量子点薄膜。高迁移率,长载流子寿命的量子点薄膜的电子结构,以确定大的结偏移量将被集成到太阳能电池和优化,以形成宽带,高吸收的量子点薄膜,为高效的太阳能光伏电池。拟议的研究活动将发展的表面,化学计量,和外来原子的作用的理解弱量子限制,较宽的带隙和更强的量子限制,更小的带隙量子点。表面的作用在设计高载流子迁移率的n型和p型材料中非常重要,这些材料不仅影响太阳能光电器件,而且影响广泛的可持续电子和光电器件的设计;低功率电子器件,能量收集热电器件和低功率发光二极管;从溶液可加工的QD材料开始。基本的理解和技术的发展将扩大纳米结构材料和化学转化过程的知识和教学和材料的设计,适用于不断增长的纳米结构材料的工具箱。该计划将为本科生和研究生提供跨学科的研究经验。它还将为学生和PI提供一个机会,通过演示,演示以及正式和校外课程,与K-12学生和教师,公众和科学界分享可持续和纳米级技术的科学和工程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cherie Kagan其他文献
Cherie Kagan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cherie Kagan', 18)}}的其他基金
NSF Engineering Research Center for the Internet of Things for Precision Agriculture (IoT4Ag)
NSF 精准农业物联网工程研究中心 (IoT4Ag)
- 批准号:
1941529 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Cooperative Agreement
COLLABORATIVE: Biomimetic Entropic Patterning (BEP) of Nanobiosensors
合作:纳米生物传感器的仿生熵模式(BEP)
- 批准号:
1804523 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Template-based Fabrication of Three-dimensional, Chiral Plasmonic Nanostructures
基于模板的三维手性等离子体纳米结构的制造
- 批准号:
1562884 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Designing the Electronic Properties of PbSe Nanowires for Optoelectronic Devices
设计用于光电器件的 PbSe 纳米线的电子特性
- 批准号:
1309053 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
MRI: Acquisition of a Nanoimprintor for Nanotechnology, Energy and Bioengineering Research, Education and Training
MRI:收购纳米压印机用于纳米技术、能源和生物工程研究、教育和培训
- 批准号:
1040215 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SOLAR: Programming the Self-Assembly of Matter for Solar Energy Conversion
太阳能:对太阳能转换的物质自组装进行编程
- 批准号:
0935165 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Engineering Organic-Inorganic Hybrid Materials for the Conversion of Solar Energy
用于太阳能转换的工程有机-无机杂化材料
- 批准号:
0854226 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Shape-Dependent Electronic and Optical Properties in Semiconductor Nanowires
半导体纳米线中形状相关的电子和光学特性
- 批准号:
0805155 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
Inorganic Quantum Dot-Organic Hybrid Materials for Renewable Energy Technologies
用于可再生能源技术的无机量子点-有机杂化材料
- 批准号:
2885895 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
Uncovering Energy and Charge Transport Mechanisms in Organic-Inorganic Hybrid Perovskite Quantum Wells with Nonlinear Action Spectroscopies
利用非线性作用光谱揭示有机-无机杂化钙钛矿量子阱中的能量和电荷传输机制
- 批准号:
2154791 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Study of spin photocurrent in 2D hybrid organic-inorganic perovskite multiple quantum wells
二维杂化有机-无机钙钛矿多量子阱中自旋光电流的研究
- 批准号:
2054169 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Colloidal synthesis of all-inorganic tin-based perovskite quantum dots and their application for solar cells
全无机锡基钙钛矿量子点的胶体合成及其在太阳能电池中的应用
- 批准号:
21H01743 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
LEAP-HI: Manufacturing of Silicon-based Hybrid Organic-Inorganic Quantum Building Blocks
LEAP-HI:硅基杂化有机-无机量子构件的制造
- 批准号:
2053567 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Inorganic hole transport layers for efficient and stable quantum dot light emitting diodes
用于高效稳定量子点发光二极管的无机空穴传输层
- 批准号:
550958-2020 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
University Undergraduate Student Research Awards
2D Arrays of Quantum Well Hall Effect Sensors for Picotesla Magnetometry of Inorganic and Organic Materials.
用于无机和有机材料皮特斯拉磁力测量的二维量子阱霍尔效应传感器阵列。
- 批准号:
2323635 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Studentship
Extraordinary plastic deformation of ionic inorganic crystals based on dislocation quantum structures
基于位错量子结构的离子无机晶体的非凡塑性变形
- 批准号:
18H03838 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Solution-processed solar cell with a composite of inorganic colloidal quantum dots and organic singlet exciton fission molecules
无机胶体量子点与有机单线态激子裂变分子复合的溶液处理太阳能电池
- 批准号:
17H03103 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of quantum dot/inorganic nanowire hybrid strucutres for efficient infrared solar cells
用于高效红外太阳能电池的量子点/无机纳米线混合结构的开发
- 批准号:
16H03824 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)