EAGER: Virtual Motion Camouflage based Subspace Optimal Control for Real-Time Trajectory Planning
EAGER:基于虚拟运动伪装的实时轨迹规划子空间最优控制
基本信息
- 批准号:0939093
- 负责人:
- 金额:$ 5.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this EArly-concept Grants for Exploratory Research (EAGER) award is to investigate, better understand, and validate a novel and unique subspace optimal control methodology that will potentially build a foundation for advancing the state of knowledge in the critical area of real-time trajectory planning for single or cooperative systems. A new method, based on the bio-inspired motion camouflage phenomenon and higher order discretization schemes, will be investigated such that the computational cost in solving constrained nonlinear optimal trajectory problems can be dramatically reduced. A systematic tool of judging the optimality of the solution after it is obtained will be investigated and followed by a theoretically proven guideline on how to select the virtual prey motion beforehand such that a ?good? subspace can be constructed a priori. In this EAGER project, two example problems will be used to validate the methodologies: a Cooperative Electronic Combat Air Vehicles (ECAVs) problem and a mobile robot collision trajectory planning problem.As a potentially transformative technique, the proposed research will not only provide an innovative approach for real-time trajectory planning but also contribute to a wide range of other applications that can be modeled in a standard constrained nonlinear optimal control form. Even more important, the results of this research will promote the implementation of biological motion strategies existing in nature to practical engineering or scientific problems. This research is expected to impact both theories and applications and bridge the gap between them. The PI and graduate students will attend forums organized by the NSF CMMI to disseminate our innovations and findings throughout the project period. Research findings will be evaluated by project reports, journal publications, and peer feedback. The biological phenomenon and research subtasks and findings will be used to enrich the undergraduate dynamics course and the graduate optimal control course. New teaching materials will be linked to the National Science Digital Library.
EARLY概念探索性研究赠款(EAGER)的研究目标是调查,更好地理解和验证一种新颖独特的子空间最优控制方法,该方法可能为推进知识状态奠定基础。基于仿生运动伪装现象和高阶离散化方法,提出了一种新的求解约束非线性最优轨迹问题的方法,该方法可以大大降低求解约束非线性最优轨迹问题的计算量。一个系统的工具,判断最优的解决方案后,它是获得调查,然后由一个理论上证明的指导方针,就如何选择虚拟猎物运动事先,使?好吗?子空间可以先验地构造。在这个EAGER项目中,将使用两个示例问题来验证方法:协同电子作战飞机(ECAV)问题和移动的机器人碰撞轨迹规划问题。作为一种潜在的变革性技术,拟议的研究不仅将为真实的-时间轨迹规划,而且还有助于可以以标准约束非线性最优控制形式建模的广泛的其它应用。更重要的是,本文的研究成果将促进自然界中存在的生物运动策略在实际工程或科学问题中的应用。 该研究有望对理论和应用产生影响,并弥合两者之间的差距。 PI和研究生将参加由NSF CMMI组织的论坛,在整个项目期间传播我们的创新和发现。 研究结果将通过项目报告、期刊出版物和同行反馈进行评估。生物现象和研究子任务和研究结果将用于丰富本科动力学课程和研究生最优控制课程。新教材将与国家科学数字图书馆相连接。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yunjun Xu其他文献
Subspace Structured Neural Network for Rapid Trajectory Optimization
用于快速轨迹优化的子空间结构化神经网络
- DOI:
10.1016/j.ifacol.2023.11.007 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Luis Tituaña;Yunjun Xu - 通讯作者:
Yunjun Xu
Multi-nozzle, common-rail-based, piezo-actuated, pulsed spray cooling testbed
基于共轨、压电驱动的多喷嘴脉冲喷雾冷却试验台
- DOI:
10.1016/j.ijheatmasstransfer.2024.126596 - 发表时间:
2025-05-15 - 期刊:
- 影响因子:5.800
- 作者:
Andrew G. Fordon;Fernando Soria;Edward Woodruff;Chance Brewer;Yunjun Xu;Shawn A. Putnam - 通讯作者:
Shawn A. Putnam
A small autonomous field robot for strawberry harvesting
一种用于草莓采摘的小型自主田间机器人
- DOI:
10.1016/j.atech.2024.100454 - 发表时间:
2024-08-01 - 期刊:
- 影响因子:5.700
- 作者:
Luis Tituaña;Akram Gholami;Zixuan He;Yunjun Xu;Manoj Karkee;Reza Ehsani - 通讯作者:
Reza Ehsani
Thin Film Surface Reconstruction from Interferometry Curvature Measurements
通过干涉曲率测量重建薄膜表面
- DOI:
10.1109/rapid54472.2022.9911567 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Fernando Soria;Andrew G. Fordon;Yunjun Xu;S. Putnam - 通讯作者:
S. Putnam
A quadrature-based method of moments for nonlinear filtering
- DOI:
10.1016/j.automatica.2009.01.015 - 发表时间:
2009-05-01 - 期刊:
- 影响因子:
- 作者:
Yunjun Xu;Prakash Vedula - 通讯作者:
Prakash Vedula
Yunjun Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yunjun Xu', 18)}}的其他基金
NRI: INT: COLLAB: Distributed co-Robots for Strawberry Harvesting
NRI:INT:COLLAB:用于草莓采摘的分布式协作机器人
- 批准号:
1924622 - 财政年份:2019
- 资助金额:
$ 5.58万 - 项目类别:
Standard Grant
Interactive Web-Based Visualization Tools for Gluing Undergraduate Fuel Cell System Courses
用于粘合本科燃料电池系统课程的基于网络的交互式可视化工具
- 批准号:
1245747 - 财政年份:2013
- 资助金额:
$ 5.58万 - 项目类别:
Standard Grant
Collaborative Research: Gaming and Interactive Visualization for Education
合作研究:教育游戏和交互式可视化
- 批准号:
0737296 - 财政年份:2008
- 资助金额:
$ 5.58万 - 项目类别:
Standard Grant
Collaborative Research: Gaming and Interactive Visualization for Education
合作研究:教育游戏和交互式可视化
- 批准号:
0840661 - 财政年份:2008
- 资助金额:
$ 5.58万 - 项目类别:
Standard Grant
相似海外基金
Modeling Diverse, Personalized and Expressive Animations for Virtual Characters through Motion Capture, Synthesis and Perception
通过动作捕捉、合成和感知为虚拟角色建模多样化、个性化和富有表现力的动画
- 批准号:
DGECR-2022-00415 - 财政年份:2022
- 资助金额:
$ 5.58万 - 项目类别:
Discovery Launch Supplement
Modeling Diverse, Personalized and Expressive Animations for Virtual Characters through Motion Capture, Synthesis and Perception
通过动作捕捉、合成和感知为虚拟角色建模多样化、个性化和富有表现力的动画
- 批准号:
RGPIN-2022-04920 - 财政年份:2022
- 资助金额:
$ 5.58万 - 项目类别:
Discovery Grants Program - Individual
The neural basis of multisensory processing during self motion in real and virtual environments
真实和虚拟环境中自我运动过程中多感官处理的神经基础
- 批准号:
RGPIN-2020-03977 - 财政年份:2022
- 资助金额:
$ 5.58万 - 项目类别:
Discovery Grants Program - Individual
Perception of Layout and Motion during Self Motion in Real and Virtual Worlds
真实和虚拟世界中自我运动期间的布局和运动感知
- 批准号:
RGPIN-2020-06061 - 财政年份:2022
- 资助金额:
$ 5.58万 - 项目类别:
Discovery Grants Program - Individual
The development of 360° motion scenes in real time with true world parallax for auto design, vehicle configurators and Virtual production.
实时开发具有真实世界视差的 360° 运动场景,用于汽车设计、车辆配置器和虚拟生产。
- 批准号:
10029832 - 财政年份:2022
- 资助金额:
$ 5.58万 - 项目类别:
Collaborative R&D
Continuous and Responsive Motion Generation for Virtual Humans
虚拟人的连续响应运动生成
- 批准号:
21K12192 - 财政年份:2021
- 资助金额:
$ 5.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
I-Corps: An interactive gaming platform that uses motion assessment and virtual reality to incorporate STEM and social-emotional learning
I-Corps:一个互动游戏平台,使用运动评估和虚拟现实来整合 STEM 和社交情感学习
- 批准号:
2120171 - 财政年份:2021
- 资助金额:
$ 5.58万 - 项目类别:
Standard Grant
Perception of Layout and Motion during Self Motion in Real and Virtual Worlds
真实和虚拟世界中自我运动期间的布局和运动感知
- 批准号:
RGPIN-2020-06061 - 财政年份:2021
- 资助金额:
$ 5.58万 - 项目类别:
Discovery Grants Program - Individual
The neural basis of multisensory processing during self motion in real and virtual environments
真实和虚拟环境中自我运动过程中多感官处理的神经基础
- 批准号:
RGPIN-2020-03977 - 财政年份:2021
- 资助金额:
$ 5.58万 - 项目类别:
Discovery Grants Program - Individual
Perception of Layout and Motion during Self Motion in Real and Virtual Worlds
真实和虚拟世界中自我运动期间的布局和运动感知
- 批准号:
RGPIN-2020-06061 - 财政年份:2020
- 资助金额:
$ 5.58万 - 项目类别:
Discovery Grants Program - Individual