CAREER: Computational Tools for Fundamental Characterization and Inference of Genetic Interaction Networks
职业:遗传相互作用网络基本表征和推理的计算工具
基本信息
- 批准号:0953881
- 负责人:
- 金额:$ 57.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-15 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The University of Minnesota-Twin Cities is awarded a grant by the NSF Faculty Early Career Development (CAREER) Program to support the development of computational approaches for understanding large-scale genetic interaction networks. Understanding the organization of biological systems and how it relates to function is one of the fundamental questions of modern molecular biology. A classical approach to characterizing cellular organization is to probe a cell with combinations of genetic perturbations and observe the resulting phenotype. This approach has recently been applied on a genome-wide scale in model organisms like yeast, where experimental technologies have enabled the construction of millions of combinatorial mutants. Preliminary studies hint that these data may provide an unprecedented view of cellular organization, but our ability to generate mutants and measure quantitative phenotypes has quickly surpassed our capacity for systematic interpretation of them. This project will support the development of computational infrastructure for addressing this need, including three specific objectives: (1) novel algorithms for comprehensive mining of genetic interaction network structure, (2) predictive models of genetic interactions from diverse genomic data within and across species, and (3) software tools for integrative analysis and visualization of genetic interaction networks to facilitate discovery.The research goals of the project are integrated with an educational component, which will address a critical need in interdisciplinary science: the issue of identifying talented students early enough such that they are able to establish a broad, but solid, foundation for interdisciplinary research. The PI will start a bioinformatics outreach program in which area high-school science and math teachers, particularly those from rural communities, are invited to participate in and develop their own educational programs highlighting recent successes and future directions in genomics and bioinformatics. The PI is also developing new computational biology courses at both the undergraduate and graduate level and involving undergraduate and graduate students in highly collaborative, interdisciplinary projects. More about the project can be found at http://www.cs.umn.edu/~cmyers.
明尼苏达大学双城分校获得了美国国家科学基金会教师早期职业发展(Career)计划的资助,以支持开发用于理解大规模基因相互作用网络的计算方法。了解生物系统的组织及其与功能的关系是现代分子生物学的基本问题之一。表征细胞组织的经典方法是用遗传扰动组合探测细胞并观察所产生的表型。这种方法最近在酵母等模式生物的全基因组范围内得到了应用,实验技术已经使数百万个组合突变体的构建成为可能。初步研究表明,这些数据可能为细胞组织提供了前所未有的视角,但我们产生突变体和测量定量表型的能力很快就超过了我们对它们进行系统解释的能力。该项目将支持解决这一需求的计算基础设施的发展,包括三个具体目标:(1)综合挖掘遗传相互作用网络结构的新算法;(2)从物种内和跨物种的不同基因组数据中获得遗传相互作用的预测模型;(3)用于遗传相互作用网络的综合分析和可视化的软件工具,以促进发现。该项目的研究目标与教育组成部分相结合,这将解决跨学科科学的一个关键需求:尽早发现有才华的学生,使他们能够为跨学科研究建立广泛而坚实的基础。PI将启动一项生物信息学推广计划,邀请地区高中科学和数学教师,特别是来自农村社区的教师参与并开发他们自己的教育计划,重点介绍基因组学和生物信息学的最新成就和未来方向。PI还在本科生和研究生阶段开发新的计算生物学课程,并让本科生和研究生参与高度协作的跨学科项目。更多关于这个项目的信息可以在http://www.cs.umn.edu/~cmyers上找到。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chad Myers其他文献
Target identification using a yeast chemical genomic approach
使用酵母化学基因组方法进行目标鉴定
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yoko Yashiroda;Sheena Li;Hiroyuki Osada;Minoru Yoshida;Chad Myers;Charles Boone - 通讯作者:
Charles Boone
An Integrated Chemical Genomic Approach for Target Identification
用于目标识别的综合化学基因组方法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yoko Yashiroda、Sheena Li;Urvi Bhojoo;Mami Yoshimura;Hiromi Kimura;Yumi Kawamura;Hamid Safizadeh;Scott Simpkins;Justin Nelson;Hiroyuki Hirano;Hiroyuki Osada;Minoru Yoshida;Chad Myers;Charles Boone - 通讯作者:
Charles Boone
Gene Expression Analysis Reveals a Subset of <em>TP53mutant</em>-like AML with Wild Type <em>TP53</em> and Poor Prognosis
- DOI:
10.1182/blood-2022-167021 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Yoonkyu Lee;Chad Myers;Zohar Sachs - 通讯作者:
Zohar Sachs
Utilizing whole genome sequences to study population genomics of gene networks: a case study of the Arabidopsis thaliana immune-signaling network
利用全基因组序列研究基因网络的群体基因组学:拟南芥免疫信号网络的案例研究
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:12.3
- 作者:
Mridu Middha;Yungil Kim;Peter Morrell;Chad Myers;Fumiaki Katagiri - 通讯作者:
Fumiaki Katagiri
Gene Expression Analysis Reveals a Subset of emTP53mutant/em-like AML with Wild Type emTP53/em and Poor Prognosis
基因表达分析揭示了具有野生型 emTP53/em 且预后不良的 emTP53 突变/em 样 AML 的一个子集
- DOI:
10.1182/blood-2022-167021 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:23.100
- 作者:
Yoonkyu Lee;Chad Myers;Zohar Sachs - 通讯作者:
Zohar Sachs
Chad Myers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chad Myers', 18)}}的其他基金
Large-scale mapping of genetic interactions across diverse cell types
不同细胞类型之间遗传相互作用的大规模绘图
- 批准号:
1818293 - 财政年份:2018
- 资助金额:
$ 57.2万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Computational tools for analyzing and interpreting DNA methylation
职业:用于分析和解释 DNA 甲基化的计算工具
- 批准号:
2144534 - 财政年份:2022
- 资助金额:
$ 57.2万 - 项目类别:
Continuing Grant
CAREER: Statistical approaches and computational tools for analyzing spatially-resolved single-cell transcriptomics data
职业:用于分析空间分辨单细胞转录组数据的统计方法和计算工具
- 批准号:
2047611 - 财政年份:2021
- 资助金额:
$ 57.2万 - 项目类别:
Continuing Grant
CAREER: Developing Computational Tools to Revitalize the U.S. Textile Manufacturing Workforce
职业:开发计算工具以振兴美国纺织制造劳动力
- 批准号:
2048022 - 财政年份:2021
- 资助金额:
$ 57.2万 - 项目类别:
Standard Grant
CAREER: Revealing spin-state-dependent reactivity in open-shell single atom catalysts with systematically-improvable computational tools
职业:利用可系统改进的计算工具揭示开壳单原子催化剂中自旋态依赖的反应性
- 批准号:
1846426 - 财政年份:2019
- 资助金额:
$ 57.2万 - 项目类别:
Standard Grant
CAREER: Mathematical Modeling and Computational Tools for in vivo Astrocyte Activity
职业:体内星形胶质细胞活性的数学建模和计算工具
- 批准号:
1750931 - 财政年份:2018
- 资助金额:
$ 57.2万 - 项目类别:
Continuing Grant
CAREER: Computational tools for the analysis of large stochastic networks
职业:用于分析大型随机网络的计算工具
- 批准号:
1554907 - 财政年份:2016
- 资助金额:
$ 57.2万 - 项目类别:
Continuing Grant
CAREER: Computational and visualization tools for translating climate change into ecological impacts
职业:将气候变化转化为生态影响的计算和可视化工具
- 批准号:
1349865 - 财政年份:2014
- 资助金额:
$ 57.2万 - 项目类别:
Continuing Grant
CAREER: Computational Tools for Interpreting Genomes
职业:解释基因组的计算工具
- 批准号:
0846218 - 财政年份:2009
- 资助金额:
$ 57.2万 - 项目类别:
Standard Grant
CAREER: Computational Tools for Evolutionary Analysis of Biological Interaction Networks
职业:生物相互作用网络进化分析的计算工具
- 批准号:
0845336 - 财政年份:2009
- 资助金额:
$ 57.2万 - 项目类别:
Continuing Grant
CAREER: Computational Tools for Population Biology
职业:群体生物学的计算工具
- 批准号:
0747369 - 财政年份:2008
- 资助金额:
$ 57.2万 - 项目类别:
Standard Grant