CAREER: Computational Tools for Evolutionary Analysis of Biological Interaction Networks
职业:生物相互作用网络进化分析的计算工具
基本信息
- 批准号:0845336
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-15 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intellectual MeritRapid advances in biotechnologies are amassing biological interaction data, such as protein-protein and gene-gene interaction networks, at unprecedented pace and rate, presenting a new powerful resource and allowing the reformulation of old, yet important, biological questions in a new context. The size and complexity of these new types of data pose great challenges for experimental and computational biologists alike. Addressing these challenges has been a primary focus of much research under the umbrella term of systems biology. However, almost no work has been done on providing tools for simultaneous evolutionary analysis of genomic and interactomic data. This project will delineate the significant impact such a simultaneous analysis can have on understanding and analyzing biological interaction networks, and will explore new methodologies for conducting computational analyses. In particular, two areas will be addressed that will help shed light on interaction networks and their complexity:1. Novel genome-interactome evolutionary models. Coalescent theory has been one of the central models for establishing the relationships among gene genealogies and species phylogenies. In its current form this theory neither allows for modeling events that arise in genomic studies, such as gene duplication and loss, nor has it been used to explain interaction network evolution. This research will extend coalescent theory to model genome-scale evolutionary events, and develop a new unified framework for modeling the simultaneous evolution of genomic and interactomic data. 2. Novel stochastic modeling and inference using graph grammars. Stochastic models, such as hidden Markov models and stochastic context-free grammars, have been used extensively in the analysis of biological sequence data. However, no equivalent models have been introduced for analysis of interaction networks. This research will explore new applications of stochastic graph grammars, as well as ways in which these stochastic models can be used to provide insightful analyses of these networks. Broad ImpactSituated at the intersection of cellular, molecular, and evolutionary biology, this work will have a significant impact on the development and applications of computational tools such as stochastic graph grammars and dissimilarity measures. The project will provide opportunities for training students in an interdisciplinary area, and will result in the development of new courses focused on evolutionary analysis of biological networks. The interdisciplinary nature of the proposed work will help successfully recruit students to computer science from traditionally under-represented groups. The project methodologies will be implemented in software packages and made available through open-source mechanisms.
生物技术的快速发展正在以前所未有的速度和速度积累生物相互作用数据,如蛋白质-蛋白质和基因-基因相互作用网络,提供了一种新的强大资源,并允许在新的背景下重新制定旧的,但重要的生物学问题。这些新型数据的规模和复杂性对实验和计算生物学家都提出了巨大的挑战。解决这些挑战一直是系统生物学这一总术语下许多研究的主要焦点。然而,几乎没有工作已经做了提供工具,同时进化分析的基因组和interactomic数据。这个项目将描绘的标志fi不能影响这样的同步分析可以对理解和分析生物相互作用网络,并将探索新的方法进行计算分析。特别是,两个领域将得到解决,这将有助于阐明互动网络及其复杂性:1。新的基因组相互作用组进化模型。结合理论一直是建立基因谱系和物种亲缘关系的核心模型之一。在其目前的形式,这一理论既不允许在基因组研究中出现的建模事件,如基因复制和丢失,也没有被用来解释相互作用网络的进化。这项研究将扩展合并理论,以模拟基因组规模的进化事件,并开发一个新的uni#64257;艾德框架,用于模拟基因组和interactomic数据的同时进化。2.使用图文法的新随机建模与推理。随机模型,如隐马尔可夫模型和随机上下文无关文法,已被广泛用于生物序列数据的分析。然而,没有等效模型已被引入相互作用网络的分析。这项研究将探索随机图文法的新应用,以及这些随机模型可以用来提供这些网络的深入分析的方式。 广泛的影响位于细胞,分子和进化生物学的交叉点,这项工作将有一个显着的#64257;不能影响的发展和应用的计算工具,如随机图文法和相异性措施。该项目将提供机会,在跨学科领域培训学生,并将导致开发新的课程,重点是生物网络的进化分析。拟议工作的跨学科性质将有助于成功地从传统上代表性不足的群体中招募计算机科学学生。项目方法将以软件包的形式实施,并通过开放源码机制提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luay Nakhleh其他文献
A survey of computational approaches for characterizing microbial interactions in microbial mats
- DOI:
10.1186/s13059-025-03634-2 - 发表时间:
2025-06-16 - 期刊:
- 影响因子:9.400
- 作者:
Vanesa L. Perillo;Michael Nute;Nicolae Sapoval;Kristen D. Curry;Logan Golia;Yongze Yin;Huw A. Ogilvie;Luay Nakhleh;Santiago Segarra;Devaki Bhaya;Diana G. Cuadrado;Todd J. Treangen - 通讯作者:
Todd J. Treangen
Comments on the model parameters in “SiFit: inferring tumor trees from single-cell sequencing data under finite-sites models”
- DOI:
10.1186/s13059-019-1692-5 - 发表时间:
2019-05-16 - 期刊:
- 影响因子:9.400
- 作者:
Hamim Zafar;Anthony Tzen;Nicholas Navin;Ken Chen;Luay Nakhleh - 通讯作者:
Luay Nakhleh
Stranger in a strange land: the experiences of immigrant researchers
- DOI:
10.1186/s13059-017-1370-4 - 发表时间:
2017-12-01 - 期刊:
- 影响因子:9.400
- 作者:
Sophien Kamoun;Rosa Lozano-Durán;Luay Nakhleh - 通讯作者:
Luay Nakhleh
Luay Nakhleh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luay Nakhleh', 18)}}的其他基金
DMS/NIGMS 2: Scalable Bayesian Inference with Applications to Phylogenetics
DMS/NIGMS 2:可扩展贝叶斯推理及其在系统发育学中的应用
- 批准号:
2153704 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
III: Medium: Scalable Evolutionary Analysis of SNVs and CNAs in Cancer Using Single-Cell DNA Sequencing Data
III:中:使用单细胞 DNA 测序数据对癌症中的 SNV 和 CNA 进行可扩展的进化分析
- 批准号:
2106837 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
IIBR Informatics: Taming Complexity Through Simulations: Scalable Inference Under the Coalescent with Recombination
IIBR 信息学:通过模拟驯服复杂性:重组合并下的可扩展推理
- 批准号:
2030604 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
The AGEP Data Engineering and Science Alliance Model: Training and Resources to Advance Minority Graduate Students and Postdoctoral Researchers into Faculty Careers
AGEP 数据工程和科学联盟模型:促进少数族裔研究生和博士后研究人员进入教师职业的培训和资源
- 批准号:
1916093 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
III: Small: Models and Methods for Simultaneous Genotyping and Phylogeny Inference from Single-Cell DNA Data
III:小型:根据单细胞 DNA 数据同时进行基因分型和系统发育推断的模型和方法
- 批准号:
1812822 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
AF: Medium: Algorithms for Scalable Phylogenetic Network Inference
AF:Medium:可扩展系统发育网络推理算法
- 批准号:
1800723 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
AF: Medium: Statistical Inference of Complex Evolutionary Histories
AF:媒介:复杂进化历史的统计推断
- 批准号:
1514177 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
AF: Medium: Algorithmic Foundations for Phylogenetic Networks
AF:中:系统发育网络的算法基础
- 批准号:
1302179 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
ABI Innovation: Collaborative Research: Novel Methodologies for Genome-scale Evolutionary Analysis of Multi-locus Data
ABI 创新:协作研究:多位点数据基因组规模进化分析的新方法
- 批准号:
1062463 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SGER: NET HMMs and Their Applications to Biological Network Alignment
SGER:NET HMM 及其在生物网络对齐中的应用
- 批准号:
0829276 - 财政年份:2008
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Computational tools for analyzing and interpreting DNA methylation
职业:用于分析和解释 DNA 甲基化的计算工具
- 批准号:
2144534 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Statistical approaches and computational tools for analyzing spatially-resolved single-cell transcriptomics data
职业:用于分析空间分辨单细胞转录组数据的统计方法和计算工具
- 批准号:
2047611 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Developing Computational Tools to Revitalize the U.S. Textile Manufacturing Workforce
职业:开发计算工具以振兴美国纺织制造劳动力
- 批准号:
2048022 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Revealing spin-state-dependent reactivity in open-shell single atom catalysts with systematically-improvable computational tools
职业:利用可系统改进的计算工具揭示开壳单原子催化剂中自旋态依赖的反应性
- 批准号:
1846426 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Mathematical Modeling and Computational Tools for in vivo Astrocyte Activity
职业:体内星形胶质细胞活性的数学建模和计算工具
- 批准号:
1750931 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Computational tools for the analysis of large stochastic networks
职业:用于分析大型随机网络的计算工具
- 批准号:
1554907 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Computational and visualization tools for translating climate change into ecological impacts
职业:将气候变化转化为生态影响的计算和可视化工具
- 批准号:
1349865 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Computational Tools for Fundamental Characterization and Inference of Genetic Interaction Networks
职业:遗传相互作用网络基本表征和推理的计算工具
- 批准号:
0953881 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Computational Tools for Interpreting Genomes
职业:解释基因组的计算工具
- 批准号:
0846218 - 财政年份:2009
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Computational Tools for Population Biology
职业:群体生物学的计算工具
- 批准号:
0747369 - 财政年份:2008
- 资助金额:
$ 50万 - 项目类别:
Standard Grant