CAREER: Towards a Constructive Theory of Networked Interactions

职业:走向网络交互的建设性理论

基本信息

项目摘要

As Computer Science struggles to understand the Internet and its capabilities, computer scientists are incorporating concepts and methodologies from Economics and Game Theory into their discipline. In the past decade, there has been a tremendous growth in research, centering around the following questions: what game-theoretic tools are applicable to computer systems? How far is the performance of a system from optimality due to the conflict of interests of its users and administrators? And, how can we design a system whose performance is robust with respect to the potential conflict of interests inside the system? The proposed research aims to tackle some of the fundamental problems at the interface of Computer Science and Game Theory, with a focus on networked interactions.The tools that game theorists have traditionally used to model behavior in systems of interacting individuals, such as the Nash and the market equilibria, have been recently shown to be computationally intractable. The intractability of these concepts limits their applicability to policy making since their predictions, although mathematically well-defined, are hard to compute. Moreover, this intractability result raises suspicion as to whether these predictions arise in actuality: if the behavior predicted by some equilibrium concept cannot be found efficiently, how is it that rational individuals find it and adopt it?The goal of this project is to develop a theory of networked interactions that does not run into the computational complexity barrier, answering such questions as: In what settings is it possible to use existing tools, such as the Nash equilibrium, to predict selfish behavior computationally efficiently? How does the structure of the interaction graph affect the tractability of equilibria? When computing Nash equilibria is intractable, is it possible to make approximate predictions efficiently? And if this is infeasible, are there other concepts of equilibrium that are both plausible and tractable? Also, in the context of trading: What kind of market equilibrium comes about in a trading network? Is it always identical to the market equilibrium assuming full information? If so, how does it come to arise in the presence of the communication constraints imposed by the network structure? If not, how different is it? And for what kinds of networks is it similar to the full-information one?The development of a successful theory of networked interactions will necessitate answering deep questions within the theory of computation. Equilibrium concepts typically correspond to fixed points of continuous maps, which have proven to be a challenging computational object for present techniques. In recent years, algorithmic progress on computing equilibria has brought new techniques to the theoretical computer science community. Likewise, characterizing the complexity of game-theoretic concepts has broadened the computational complexity landscape beyond traditional complexity classes. Several questions, such as the approximation complexity of Nash equilibria, the complexity of simple stochastic games as well as other fixed points at the intersection of the complexity classes known as PLS and PPAD, and the complexity of market equilibria for constant elasticity of substitution (CES) utility functions, are evading existing techniques. Furthering our understanding of rational behavior in large systems will necessarily involve developing novel algorithmic and complexity-theoretic tools to meet the challenges posed by these problems.
随着计算机科学努力理解互联网及其功能,计算机科学家正在将经济学和博弈论的概念和方法纳入他们的学科。在过去的十年里,围绕着以下问题的研究有了巨大的增长:什么样的博弈论工具适用于计算机系统?由于用户和管理员的利益冲突,系统的性能离最佳状态有多远?此外,我们如何设计一个系统,使其在系统内部的潜在利益冲突方面表现稳健?这项研究旨在解决计算机科学和博弈论之间的一些基本问题,重点是网络互动。博弈论家传统上用来模拟互动个体系统中行为的工具,如纳什均衡和市场均衡,最近已被证明是计算上难以解决的。这些概念的复杂性限制了它们在政策制定中的适用性,因为它们的预测虽然在数学上有明确的定义,但很难计算。此外,这个难以解决的结果引起了人们对这些预测是否在现实中出现的怀疑:如果不能有效地找到某个均衡概念所预测的行为,那么理性的个人是如何找到并采用它的呢?该项目的目标是开发一种不会遇到计算复杂性障碍的网络交互理论,回答这样的问题:在什么情况下可以使用现有的工具(如纳什均衡)来有效地预测自私行为?交互作用图的结构如何影响均衡的易处理性?当计算纳什均衡是棘手的,是否有可能有效地作出近似预测?如果这是不可行的,是否有其他均衡的概念是合理的和易于处理的?此外,在交易的背景下:什么样的市场均衡会出现在一个交易网络?它是否总是等同于假设完全信息的市场均衡?如果是这样的话,在网络结构所施加的通信约束存在的情况下,它是如何产生的?如果不是,有什么不同?对于什么样的网络,它与全信息网络相似?网络交互的成功理论的发展将需要回答计算理论中的深层次问题。平衡概念通常对应于连续映射的不动点,这已经被证明是本技术的一个具有挑战性的计算对象。近年来,计算平衡的算法进步为理论计算机科学界带来了新技术。类似地,描述博弈论概念的复杂性已经扩大了计算复杂性的范围,超出了传统的复杂性类别。几个问题,如近似复杂性的纳什均衡,简单的随机游戏的复杂性,以及其他不动点的复杂性类称为PLS和PPAD的交叉点,和复杂性的市场均衡的恒定替代弹性(CES)效用函数,回避现有的技术。为了进一步理解大型系统中的理性行为,我们必须开发新的算法和复杂性理论工具来应对这些问题带来的挑战。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Constantinos Daskalakis其他文献

Online Learning and Solving Infinite Games with an ERM Oracle.
使用 ERM Oracle 在线学习和解决无限游戏。
The Complexity of Markov Equilibrium in Stochastic Games
随机博弈中马尔可夫均衡的复杂性
From External to Swap Regret 2.0: An Efficient Reduction for Large Action Spaces
从外部到交换遗憾2.0:大动作空间的有效减少
The Complexity of Markov Equilibrium in Stochastic Games.
随机博弈中马尔可夫均衡的复杂性。

Constantinos Daskalakis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Constantinos Daskalakis', 18)}}的其他基金

AF: Medium: Collaborative Research: Theoretical Foundations of Deep Generative Models and High-Dimensional Distributions
AF:中:协作研究:深度生成模型和高维分布的理论基础
  • 批准号:
    1901292
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
AF: SMALL: Frontiers in Algorithmic Game Theory
AF:小:算法博弈论的前沿
  • 批准号:
    1617730
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
EAGER: Research in the Interface of Algorithmic Game Theory and Learning
EAGER:算法博弈论与学习的接口研究
  • 批准号:
    1551875
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
ICES: Small: A Probabilistic Look at Algorithmic Game Theory
ICES:小:算法博弈论的概率视角
  • 批准号:
    1101491
  • 财政年份:
    2011
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似海外基金

Sexual offence interviewing: Towards victim-survivor well-being and justice
性犯罪面谈:为了受害者-幸存者的福祉和正义
  • 批准号:
    DE240100109
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Discovery Early Career Researcher Award
Unlocking the sensory secrets of predatory wasps: towards predictive tools for managing wasps' ecosystem services in the Anthropocene
解开掠食性黄蜂的感官秘密:开发用于管理人类世黄蜂生态系统服务的预测工具
  • 批准号:
    NE/Y001397/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Research Grant
Development of programmable nanomachines towards the enzymatic synthesis of peptide oligonucleotide conjugates
开发用于肽寡核苷酸缀合物酶促合成的可编程纳米机器
  • 批准号:
    EP/X019624/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Fellowship
Postdoctoral Fellowship: STEMEdIPRF: Towards a Diverse Professoriate: Experiences that Inform Underrepresented Scholars' Perceptions of Value Alignment and Career Decisions
博士后奖学金:STEMEdIPRF:走向多元化的教授职称:为代表性不足的学者对价值调整和职业决策的看法提供信息的经验
  • 批准号:
    2327411
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
  • 批准号:
    2338683
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
  • 批准号:
    2328281
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
  • 批准号:
    2349935
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
  • 批准号:
    2349934
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了