EAGER: Research in the Interface of Algorithmic Game Theory and Learning

EAGER:算法博弈论与学习的接口研究

基本信息

项目摘要

Recent years have seen tremendous advances in Machine Learning and in the interface between Computer Science and Economics. Progress in Machine Learning has been driven by the vast amounts of data that humanity is generating and collecting. It is now widely accepted that scientific innovation necessitates the development of computational methodology to process this data and use it for inference and prediction. This has resulted in remarkable progress at the interface of Algorithms, Machine Learning and Statistics. At the same time, much of the world's economic activity has been transferred to the Internet via old markets that obtained online presence as well as new markets that are directly inspired and enabled by online activity, such as sponsored search and ad auctions. Driven by the increasing importance of online economic activity there has been much interest in investigating its joint computational and economic characteristics through research at the interface of Computer Science and Economics, which includes Algorithmic Game Theory.The PI and his group at MIT have made several contributions to both Learning and Algorithmic Game Theory. The goal of the proposed research is to push the research front in the interface between these two fields.The PI and his team plan to pursue 4 goals, as follows. Goal (1) is to advance understanding of learning dynamics in games. Goal (2) is to design "learning mechanisms'' to solve learning and inference tasks when the only access to data is through strategic data providers with a cost for producing good data. Besides online learning, the team expects that advances in (1) will have implications to fundamental problems in Algorithmic Game Theory, particularly in goal (3): improving the state-of-the-art in algorithms for the computation of approximate Nash equilibria. Progress in (2) will have immediate applications in crowd-sourcing, but the team also plans to investigate another application, motivated by the tremendous growth of Massive Online Open Courses: goal (4) is to develop good peer grading schemes.
近年来,机器学习以及计算机科学和经济学之间的接口取得了巨大的进步。机器学习的进步是由人类产生和收集的大量数据推动的。现在人们普遍认为,科学创新需要发展计算方法来处理这些数据,并将其用于推理和预测。这在算法、机器学习和统计学的界面上取得了显著的进展。与此同时,世界上的许多经济活动已经通过获得在线存在的旧市场以及直接受到在线活动(如赞助搜索和广告拍卖)启发和推动的新市场转移到互联网上。随着在线经济活动的重要性日益增加,人们对通过计算机科学和经济学的研究来研究其联合计算和经济特征产生了浓厚的兴趣,其中包括数学博弈论。PI和他在麻省理工学院的团队对学习和数学博弈论都做出了一些贡献。本研究的目标是推动这两个领域之间的研究前沿。PI和他的团队计划实现以下4个目标。目标(1)是促进对游戏中学习动态的理解。目标(2)是设计“学习机制”,以解决学习和推理任务时,唯一的访问数据是通过战略数据提供商与成本产生良好的数据。除了在线学习之外,该团队预计(1)中的进展将对数学博弈论中的基本问题产生影响,特别是在目标(3)中:改进近似纳什均衡计算算法的最新技术。在(2)中取得的进展将立即应用于众包,但该团队还计划研究另一种应用,其动机是大规模在线开放课程的巨大增长:目标(4)是开发良好的同行评分计划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Constantinos Daskalakis其他文献

Online Learning and Solving Infinite Games with an ERM Oracle.
使用 ERM Oracle 在线学习和解决无限游戏。
The Complexity of Markov Equilibrium in Stochastic Games
随机博弈中马尔可夫均衡的复杂性
From External to Swap Regret 2.0: An Efficient Reduction for Large Action Spaces
从外部到交换遗憾2.0:大动作空间的有效减少
The Complexity of Markov Equilibrium in Stochastic Games.
随机博弈中马尔可夫均衡的复杂性。

Constantinos Daskalakis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Constantinos Daskalakis', 18)}}的其他基金

AF: Medium: Collaborative Research: Theoretical Foundations of Deep Generative Models and High-Dimensional Distributions
AF:中:协作研究:深度生成模型和高维分布的理论基础
  • 批准号:
    1901292
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
AF: SMALL: Frontiers in Algorithmic Game Theory
AF:小:算法博弈论的前沿
  • 批准号:
    1617730
  • 财政年份:
    2016
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
ICES: Small: A Probabilistic Look at Algorithmic Game Theory
ICES:小:算法博弈论的概率视角
  • 批准号:
    1101491
  • 财政年份:
    2011
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CAREER: Towards a Constructive Theory of Networked Interactions
职业:走向网络交互的建设性理论
  • 批准号:
    0953960
  • 财政年份:
    2010
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321102
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
REU site: Research at the interface between engineering and medicine (ENGMED)
REU 网站:工程与医学之间的交叉研究 (ENGMED)
  • 批准号:
    2349731
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321103
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: GreenFjord-FIBER, Observing the Ice-Ocean Interface with Exceptional Resolution
合作研究:GreenFjord-FIBER,以卓越的分辨率观测冰海界面
  • 批准号:
    2338503
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: GreenFjord-FIBER, Observing the Ice-Ocean Interface with Exceptional Resolution
合作研究:GreenFjord-FIBER,以卓越的分辨率观测冰海界面
  • 批准号:
    2338502
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400352
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400353
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321104
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Analysis and Control in Multi-Scale Interface Coupling between Deformable Porous Media and Lumped Hydraulic Circuits
合作研究:可变形多孔介质与集总液压回路多尺度界面耦合分析与控制
  • 批准号:
    2327640
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Controlling Metal-Oxide Interface Chemistry for New C-H Activation Catalysts
合作研究:控制新型 C-H 活化催化剂的金属-氧化物界面化学
  • 批准号:
    2329470
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了