CAREER: Quantum Optics in Nanoscale Devices Approaching the Quantum Limit

职业:接近量子极限的纳米级器件中的量子光学

基本信息

  • 批准号:
    0956064
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-01 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARYThis CAREER award supports theoretical research and education on novel quantum phenomena in nanoscale condensed matter devices and their applications in quantum information. As their dimensions approach the atomic limit, nanoscale devices can sometimes be treated as simple macroscopic quantum objects, such as spins and harmonic oscillators. Such quantum objects can be studied by quantum optics, which is a well-developed tool that has achieved success in studying atomic systems. A theoretical framework to study coherent, dissipative, and collective behavior of nanoscale devices will be developed in two main topics by combining techniques of quantum optics with microscopic concepts of condensed matter physics. First, continuous variable quantum information processing will be studied in nanomechanical resonators which feature tiny mechanical vibrations that can carry quantum information. The coupling between nanomechanical resonators and solid-state electronic circuits will be explored to study ground state cooling, entanglement and Bell-inequality tests, and continuous variable quantum protocols, where the mechanical mode serves as an excellent quantum storage element. Second, nonlinear effects of superconducting quantum emulators coupling to a superconducting resonator will be studied, where the emulators are made of superconducting qubits to simulate quantum many-body Hamiltonians. The nature of the quantum phase transition will be studied in this nonlinear system, and a numerical package will be developed. In both topics, questions that are of particular importance for nanoscale devices will be studied, including the proper design of circuits and the effects of low-frequency fluctuations.The research in this project connects the fields of quantum optics, condensed matter physics, and quantum information. The quantum effects in nanoscale devices can be explored to study fundamental issues in quantum mechanics, novel problems in condensed matter physics, and the development of a new generation of solid-state quantum devices. In particular, this project seeks realistic quantum computing architectures using the nanoscale devices as information carriers. This CAREER award is made to the University of California (UC), Merced, which is a newly started research university established to serve the educational needs in the San Joaquin Valley. It is the only UC campus that is designated as a Hispanic serving institution. The educational activities in this project will provide training for students from underrepresented groups, including minority and women students, to encourage and help them to pursue careers in physics. A pipeline of activities will be organized, including women physicist networking group, Saturday lecture series for high school students at a local museum in Merced County, and development of undergraduate research projects and courses using the Peer Instruction Technique.NONTECHNICAL SUMMARYThis CAREER award supports theoretical research and education on novel quantum mechanical effects in small solid-state devices on the nanometer (one billionth of a meter) size regime. On this scale the distinction between materials, atoms, and devices becomes blurred. Many such devices can be the building blocks of a quantum computer, which is a device for computation that makes use of quantum mechanical phenomena, and if successfully built on a large scale, will be much faster than any currently available classical computer for some algorithms. As the potential elements for storing information quantum mechanically, these devices can profoundly influence the information technology and national security. The research bridges the disciplines of condensed matter physics, quantum optics, and quantum information science. It focuses on two main topics. One is to explore tiny nanometer-sized mechanical resonators as carriers of quantum information. The mechanical vibrations in such resonators can be connected with solid-state electronic circuits to store and manipulate information. One focus area along this line is to study the approaches that can bring the tiny mechanical vibrations into the quantum regime by extracting the thermal noise in the system to generate ?cooling? of the resonators. The other topic is to study phenomena in superconducting quantum circuits, which carry electrical current without dissipation. These effects can introduce phenomena that are new to condensed matter physics. The quantum effects in nanoscale devices can be explored not only to study fundamental physics issues, such as the detection of gravitational waves and the boundary between the quantum and the classical worlds, but it can also help in developing a new generation of solid-state devices that are based on quantum mechanical effects for metrology and information applications. This CAREER award is made to the University of California (UC), Merced, which is a newly started research university established to serve the educational needs in the San Joaquin Valley. It is the only UC campus that is designated as a Hispanic serving institution. The educational activities in this project will provide training and learning opportunities for students from groups typically underrepresented in science and engineering disciplines, including minority and women students, to encourage and help them to pursue careers in physics. A pipeline of activities will be organized, including women physicist networking group, Saturday lecture series for high school students at a local museum in Merced County, and development of undergraduate research projects and courses using the Peer Instruction Technique.
该职业奖支持纳米凝聚态器件中的新量子现象及其在量子信息中的应用的理论研究和教育。当它们的尺寸接近原子极限时,纳米器件有时可以被视为简单的宏观量子对象,如自旋和谐振子。 这样的量子物体可以通过量子光学来研究,量子光学是一种发展良好的工具,在研究原子系统方面取得了成功。一个理论框架,研究相干,耗散和集体行为的纳米器件将在两个主要议题结合技术的量子光学与凝聚态物理学的微观概念。首先,将在纳米机械谐振器中研究连续变量量子信息处理,该谐振器具有可以携带量子信息的微小机械振动。纳米机械谐振器和固态电子电路之间的耦合将被探索,以研究基态冷却,纠缠和贝尔不等式测试,以及连续变量量子协议,其中机械模式作为一个优秀的量子存储元件。其次,研究了超导量子仿真器耦合到超导谐振器的非线性效应,其中仿真器由超导量子比特组成,以模拟量子多体哈密顿。量子相变的性质将在这个非线性系统中进行研究,并将开发一个数值软件包。在这两个课题中,将研究电路的合理设计和低频波动的影响等对纳米器件特别重要的问题。本课题的研究将量子光学、凝聚态物理和量子信息等领域联系起来。纳米器件中的量子效应可以用来研究量子力学中的基本问题、凝聚态物理中的新问题以及新一代固态量子器件的发展。特别是,该项目寻求使用纳米级设备作为信息载体的现实量子计算架构。这个职业奖是由加州大学(UC),默塞德,这是一个新成立的研究型大学,以服务于圣华金河谷的教育需求。 它是唯一的UC校园被指定为西班牙裔服务机构。 该项目的教育活动将为代表性不足群体的学生,包括少数民族学生和女学生提供培训,以鼓励和帮助他们从事物理学职业。将组织一系列活动,包括女物理学家网络小组,星期六在默塞德县当地博物馆为高中生举办系列讲座,非技术性总结该职业奖支持纳米级小型固态器件中新型量子力学效应的理论研究和教育。(十亿分之一米)大小范围。在这个尺度上,材料、原子和设备之间的区别变得模糊不清。许多这样的设备可以是量子计算机的构建模块,量子计算机是一种利用量子力学现象进行计算的设备,如果大规模成功构建,对于某些算法来说,将比任何现有的经典计算机快得多。这些器件作为量子力学存储信息的潜在元件,将对信息技术和国家安全产生深远的影响。这项研究将凝聚态物理学、量子光学和量子信息科学联系起来。报告着重于两个主要议题。一个是探索微小的纳米尺寸的机械谐振器作为量子信息的载体。这种谐振器中的机械振动可以与固态电子电路连接,以存储和处理信息。沿着这条线的一个重点领域沿着是研究的方法,可以把微小的机械振动到量子制度,通过提取系统中的热噪声产生?冷却?的共振器。另一个主题是研究超导量子电路中的现象,超导量子电路携带电流而没有耗散。 这些效应可以引入凝聚态物理学中的新现象。纳米器件中的量子效应不仅可以用于研究基本物理问题,如引力波的探测以及量子和经典世界之间的边界,而且还可以帮助开发新一代基于量子力学效应的固态器件,用于计量和信息应用。这个职业奖是由加州大学(UC),默塞德,这是一个新成立的研究型大学,以服务于圣华金河谷的教育需求。 它是唯一的UC校园被指定为西班牙裔服务机构。 该项目的教育活动将为科学和工程学科中代表性通常不足的群体的学生,包括少数民族学生和女学生提供培训和学习机会,以鼓励和帮助他们从事物理学职业。将组织一系列活动,包括女物理学家网络小组,在默塞德县当地博物馆为高中生举办的星期六系列讲座,以及利用同侪指导技术制定本科生研究项目和课程。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum Phase Transition in Strongly-Correlated Cavity Polaritons
强相关腔极化子中的量子相变
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lin Tian其他文献

Facile Modification of PS-block-PMMA to Produce High χ-Low N Block Copolymer
PS-block-PMMA简易改性生产高χ-低N嵌段共聚物
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kohei Yoshida;Lin Tian;Ken Miyagi;Takuya Isono;Takuya Yamamoto;Kenji Tajima;and Toshifumi Satoh
  • 通讯作者:
    and Toshifumi Satoh
Improved Model Parameter Transferability Method for Hydrological Simulation with SWAT in Ungauged Mountainous Catchments
未测山区流域SWAT水文模拟的模型参数可传递性改进方法
  • DOI:
    10.3390/su12093551
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Fanhao Meng;Chula Sa;Tie Liu;Min Luo;Jiao Liu;Lin Tian
  • 通讯作者:
    Lin Tian
Deposition flux and mass inventory of polychlorinated biphenyls in sediments of the Yangtze River Estuary and inner shelf, East China Sea: Implications for contributions of large-river input and e-waste dismantling
长江口和东海内陆架沉积物中多氯联苯的沉积通量和质量库存:对大河输入和电子垃圾拆解贡献的影响
  • DOI:
    10.1016/j.scitotenv.2018.08.076
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Zhao Tiange;Guo Zhigang;Yao Peng;Hu Limin;Wu Zilan;Lin Tian
  • 通讯作者:
    Lin Tian
Equatorial electrojet observed by low inclination orbit satellites: multiple cases study
低倾角轨道卫星观测的赤道电喷射:多个案例研究
  • DOI:
    10.1007/s10509-022-04098-7
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Lin Tian;H. Luo;Aimin Du;Yasong Ge;Ying Zhang;Ye Zhu;Shuquan Sun;Lin Zhao;Songyan Li;Jiefeng Yang
  • 通讯作者:
    Jiefeng Yang
Tipifarnib, a potential adjuvant that unlocks therapeutic resistance by normalizing microenvironment
Tipifarnib,一种潜在的佐剂,可通过使微环境正常化来释放治疗耐药性
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lin Tian;Si
  • 通讯作者:
    Si

Lin Tian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lin Tian', 18)}}的其他基金

Collaborative Research: Quantum acoustics for optomechanical transduction and entanglement of solid-state spin qubits
合作研究:用于光机械传导和固态自旋量子位纠缠的量子声学
  • 批准号:
    2006076
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
EAGER-QAC-QSA: Bifurcation-Enabled Efficient Preparation of Many-body Ground States
EAGER-QAC-QSA:分叉有效制备多体基态
  • 批准号:
    2037987
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Optoelectromechanical Interface in Hybrid Quantum Networks: Nonreciprocal State Conversion and Pulse Shaping
混合量子网络中的光机电接口:不可逆状态转换和脉冲整形
  • 批准号:
    1720501
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SHF: Small: Global Manipulation in Solid-State Quantum Information Processing - Protocols and Implementation
SHF:小型:固态量子信息处理的全局操纵 - 协议和实施
  • 批准号:
    0916303
  • 财政年份:
    2009
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Quantum Optics and Optomechanics: From Fundamental Tests To Quantum Tools of the Future
量子光学和光机械:从基础测试到未来的量子工具
  • 批准号:
    2308969
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Open fiber-based cavity for spectroscopix experiments in semiconductor quantum optics
用于半导体量子光学光谱实验的开放式光纤腔
  • 批准号:
    517518181
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Major Research Instrumentation
Nonlinear quantum optics using Rydberg excitons
使用里德堡激子的非线性量子光学
  • 批准号:
    2887904
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Studentship
LEAPS-MPS: Quantum Simulation with Classical Optics
LEAPS-MPS:经典光学的量子模拟
  • 批准号:
    2316878
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
REU Site: Nanophotonics, Quantum Photonics, and Vision/Biomedical Optics at the University of Rochester.
REU 站点:罗切斯特大学的纳米光子学、量子光子学和视觉/生物医学光学。
  • 批准号:
    2244031
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Photophysics of Colloidal Semiconductor Nanoplatelets Relevant to Quantum Optics
与量子光学相关的胶体半导体纳米片的光物理学
  • 批准号:
    2304937
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CAREER: Observing topological magnetoelectric effects by magneto-optics and quantum transport
职业:通过磁光和量子输运观察拓扑磁电效应
  • 批准号:
    2143177
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Quantum Optics with Atomic Ensembles and Arrays
具有原子系综和阵列的量子光学
  • 批准号:
    2207423
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Quantum optics and sensing with diamond defects
量子光学和金刚石缺陷传感
  • 批准号:
    RGPIN-2020-04095
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear quantum optics in integrated structures
集成结构中的非线性量子光学
  • 批准号:
    572628-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了