Collaborative Research: Quantum acoustics for optomechanical transduction and entanglement of solid-state spin qubits

合作研究:用于光机械传导和固态自旋量子位纠缠的量子声学

基本信息

  • 批准号:
    2006076
  • 负责人:
  • 金额:
    $ 6.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Future quantum computers will need to utilize different physical types of qubits that need to communicate and convert between each other with high fidelity and high efficiency. While photons are ideal for quantum communication, different qubit systems couple to photons of vastly different frequency ranges. The strain field generated by the mechanical wave in a solid-state material is a promising approach to enable coupling with a broad range of qubits with theoretically high efficiency. With a traveling velocity of five orders of magnitude lower than photons, acoustic waves are ideal for quantum interconnect between multiple qubits. The quantum acoustic technology developed in this project and the integration with NV-defect center qubits is an essential first step toward a chip-scale hybrid, multiple qubit systems. The proposed research both addresses the imminent issue of frequency inhomogeneity that has been plaguing solid-state optical qubits and explores the frontier of strong coupling of mechanical modes with spin qubits. The project will make significant advances from previous studies of discrete systems to realizing a monolithic quantum system that includes waveguides, optical and acoustic cavities, and acoustic transducers to directly interface with qubits, all integrated on a novel material platform. The approach offers a path to the realization of the integrated quantum computing system based on hybrid solid-state qubits interconnected with photons and phonons. The research leverages the tremendous technological development in the acoustic MEMS technology and advances it to the quantum regime, with the potential outcome that can impact both quantum information science and microwave photonics for classical communication. Education and outreach activities aim to increase the participation of students from underrepresented groups and improve the diversity of the STEM workforce and include course development in advanced quantum computing and K-12 science outreach programs with publicly accessible online courses. Technical Abstract:The project aims to develop a novel integrated quantum acoustic device platform for optomechanical transduction and quantum state manipulation of solid-state spin qubits based on defect centers in diamond. The integrated devices will be built on the high-performance heterogeneous material platform of gallium phosphide (GaP) on the crystalline diamond. The platform uniquely utilizes the layer of piezoelectric GaP for the dual functions of optical waveguiding and acoustic wave generation and guiding, thereby to achieve tremendously enhanced acousto-optic interaction. The effort will include three main thrusts. The first thrust will realize integrated acousto-optic frequency shifter (AOFS) to address the optical frequency inhomogeneity problem of qubits based on defect centers. AOFS can achieve single-sideband, carrier-suppressed frequency shift of photons from qubits freely over a range of ±3GHz and with an efficiency better than 80%. The second thrust will investigate the coupling of itinerant acoustic waves to ensembles and single defect centers. The acoustic coupling strength will be enhanced to reach the strong coupling regime and realize time-dependent control over the states of the qubits. The final thrust will realize the strong coupling of acoustic modes confined in a high-Q cavity with single defect centers embedded therein. Quantum state manipulation and quantum entanglement of the qubits by utilizing the acoustic mode will be achieved. Ensembles of NV-centers coupled to the cavity acoustic mode in the strong-coupling regime and novel physics effects in this regime will be explored.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
未来的量子计算机将需要利用不同物理类型的量子位,这些量子位需要以高保真度和高效率相互通信和转换。虽然光子是量子通信的理想选择,但不同的量子比特系统耦合到频率范围截然不同的光子。由固态材料中的机械波产生的应变场是一种很有前途的方法,可以以理论上的高效率与广泛的量子位耦合。声波的传播速度比光子低五个数量级,是多个量子比特之间量子互连的理想选择。该项目中开发的量子声学技术以及与NV缺陷中心量子位的集成是迈向芯片级混合多量子位系统的重要第一步。拟议的研究既解决了一直困扰固态光学量子位的频率不均匀性这一迫在眉睫的问题,又探索了机械模式与自旋量子位强耦合的前沿。该项目将从以前的离散系统研究取得重大进展,以实现单片量子系统,包括波导,光学和声学腔,以及直接与量子位接口的声学换能器,所有这些都集成在一种新型材料平台上。该方法为实现基于光子和声子互连的混合固态量子比特的集成量子计算系统提供了一条途径。这项研究利用了声学MEMS技术的巨大技术发展,并将其推进到量子领域,其潜在结果可能会影响量子信息科学和微波光子学的经典通信。教育和推广活动旨在增加代表性不足群体的学生的参与,提高STEM劳动力的多样性,并包括高级量子计算和K-12科学推广计划的课程开发,以及可公开访问的在线课程。技术摘要:该项目旨在开发一种新型的集成量子声学器件平台,用于基于金刚石缺陷中心的固态自旋量子比特的光机械转换和量子态操纵。集成器件将建立在晶体金刚石上的磷化镓(GaP)的高性能异质材料平台上。该平台独特地利用了压电GaP层的光波导和声波产生和引导的双重功能,从而实现了极大增强的声光相互作用。这项努力将包括三个主要方面。第一个目标是实现集成声光移频器(AOFS),以解决基于缺陷中心的量子比特的光频不均匀性问题。AOFS可以在±3GHz的范围内实现光子的单边带、载波抑制的频移,效率优于80%。第二个重点将研究巡回声波与系综和单个缺陷中心的耦合。声耦合强度将得到增强,以达到强耦合状态,并实现对量子比特状态的时间相关控制。最后的推力将实现强耦合的声学模式被限制在一个高Q腔与单缺陷中心嵌入其中。利用声模可以实现量子比特的量子态操控和量子纠缠。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Switchable bipartite and genuine tripartite entanglement via an optoelectromechanical interface
通过光电机械接口可切换二分纠缠和真正的三分纠缠
  • DOI:
    10.1103/physreva.101.042320
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Jiang Cheng;Tserkis Spyros;Collins Kevin;Onoe Sho;Li Yong;Tian Lin
  • 通讯作者:
    Tian Lin
Deterministic generation of multi-photon bundles in a quantum Rabi model
Modulation-based superradiant phase transition in the strong-coupling regime
  • DOI:
    10.1103/physreva.107.063713
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Jin‐Feng Huang;L. Tian
  • 通讯作者:
    Jin‐Feng Huang;L. Tian
Generalized ultrastrong optomechanical-like coupling
广义超强类光机耦合
  • DOI:
    10.1103/physreva.101.063802
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liao Jie-Qiao;Huang Jin-Feng;Tian Lin;Kuang Le-Man;Sun Chang-Pu
  • 通讯作者:
    Sun Chang-Pu
Extreme quantum nonlinearity in superfluid thin-film surface waves
  • DOI:
    10.1038/s41534-021-00393-3
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    7.6
  • 作者:
    Y. Sfendla;C. Baker;G. Harris;L. Tian;R. A. Harrison;W. Bowen
  • 通讯作者:
    Y. Sfendla;C. Baker;G. Harris;L. Tian;R. A. Harrison;W. Bowen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lin Tian其他文献

Facile Modification of PS-block-PMMA to Produce High χ-Low N Block Copolymer
PS-block-PMMA简易改性生产高χ-低N嵌段共聚物
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kohei Yoshida;Lin Tian;Ken Miyagi;Takuya Isono;Takuya Yamamoto;Kenji Tajima;and Toshifumi Satoh
  • 通讯作者:
    and Toshifumi Satoh
Improved Model Parameter Transferability Method for Hydrological Simulation with SWAT in Ungauged Mountainous Catchments
未测山区流域SWAT水文模拟的模型参数可传递性改进方法
  • DOI:
    10.3390/su12093551
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Fanhao Meng;Chula Sa;Tie Liu;Min Luo;Jiao Liu;Lin Tian
  • 通讯作者:
    Lin Tian
Deposition flux and mass inventory of polychlorinated biphenyls in sediments of the Yangtze River Estuary and inner shelf, East China Sea: Implications for contributions of large-river input and e-waste dismantling
长江口和东海内陆架沉积物中多氯联苯的沉积通量和质量库存:对大河输入和电子垃圾拆解贡献的影响
  • DOI:
    10.1016/j.scitotenv.2018.08.076
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Zhao Tiange;Guo Zhigang;Yao Peng;Hu Limin;Wu Zilan;Lin Tian
  • 通讯作者:
    Lin Tian
Equatorial electrojet observed by low inclination orbit satellites: multiple cases study
低倾角轨道卫星观测的赤道电喷射:多个案例研究
  • DOI:
    10.1007/s10509-022-04098-7
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Lin Tian;H. Luo;Aimin Du;Yasong Ge;Ying Zhang;Ye Zhu;Shuquan Sun;Lin Zhao;Songyan Li;Jiefeng Yang
  • 通讯作者:
    Jiefeng Yang
Tipifarnib, a potential adjuvant that unlocks therapeutic resistance by normalizing microenvironment
Tipifarnib,一种潜在的佐剂,可通过使微环境正常化来释放治疗耐药性
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lin Tian;Si
  • 通讯作者:
    Si

Lin Tian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lin Tian', 18)}}的其他基金

EAGER-QAC-QSA: Bifurcation-Enabled Efficient Preparation of Many-body Ground States
EAGER-QAC-QSA:分叉有效制备多体基态
  • 批准号:
    2037987
  • 财政年份:
    2020
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Optoelectromechanical Interface in Hybrid Quantum Networks: Nonreciprocal State Conversion and Pulse Shaping
混合量子网络中的光机电接口:不可逆状态转换和脉冲整形
  • 批准号:
    1720501
  • 财政年份:
    2017
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
CAREER: Quantum Optics in Nanoscale Devices Approaching the Quantum Limit
职业:接近量子极限的纳米级器件中的量子光学
  • 批准号:
    0956064
  • 财政年份:
    2010
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Continuing Grant
SHF: Small: Global Manipulation in Solid-State Quantum Information Processing - Protocols and Implementation
SHF:小型:固态量子信息处理的全局操纵 - 协议和实施
  • 批准号:
    0916303
  • 财政年份:
    2009
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344658
  • 财政年份:
    2024
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336135
  • 财政年份:
    2024
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344659
  • 财政年份:
    2024
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336136
  • 财政年份:
    2024
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: An Integrated Framework for Enabling Temporal-Reliable Quantum Learning on NISQ-era Devices
合作研究:OAC Core:在 NISQ 时代设备上实现时间可靠的量子学习的集成框架
  • 批准号:
    2311950
  • 财政年份:
    2023
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimizing KTaO3 Superconductivity for Quantum Applications
合作研究:优化 KTaO3 超导性以实现量子应用
  • 批准号:
    2327535
  • 财政年份:
    2023
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: FET: Small: Theoretical Foundations of Quantum Pseudorandom Primitives
合作研究:FET:小型:量子伪随机原语的理论基础
  • 批准号:
    2329938
  • 财政年份:
    2023
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing Quantum Education by Adaptively Addressing Misconceptions in Virtual Reality
合作研究:通过适应性地解决虚拟现实中的误解来推进量子教育
  • 批准号:
    2302817
  • 财政年份:
    2023
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了