CAREER: Optoelectronic Nanocomposites: Controlling the Properties of Bulk Ceramic Heterostructures using External Electric Fields.

职业:光电纳米复合材料:使用外部电场控制块状陶瓷异质结构的性能。

基本信息

  • 批准号:
    0956071
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-15 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL DESCRIPTION: The ability to bend (refract) light using transparent materials is familiar and useful in many devices such as cameras and telescopes. Light refraction properties of a special class of materials called electrooptic materials can be controlled using electric fields. Since electric fields are relatively easy to generate and change, electrooptic materials allow light paths to be changed 'on the fly'. Electrooptic materials could find a host of new applications if the electrooptic response could be attained faster or using smaller fields. The aim of this CAREER project is to extend the applicability of electrooptic ceramics by using a composite approach. Typically ceramic composites are opaque, but by carefully controlling their structure large ceramic materials whose light transmittance properties can be controlled by applying electric fields will be produced. These materials should be useful in a wide array of consumer electronics such as digital cameras and advanced applications especially in the laser field. As part of the integrated educational effort the research will be used to motivate young scientists and engineers through workshop-like demonstrations. Light interaction with materials is relatively easy to demonstrate allowing the research to be brought to life for diverse groups of students.TECHNICAL DETAILS: The refractive index is one of the most fundamental optical properties ? it controls the degree to which light is refracted by a material. The refractive index of electrooptic materials can be controlled using electric fields. Materials with high electrooptic response are already available, but often the high fields and/or slow switching times required make them prohibitive for many applications. This CAREER project will produce bulk heterostructures from oxides with different properties in order to control optical properties using small applied fields without compromising large electrooptic effects. Judicious use of oxide mixtures (composites) can tune response producing more versatile materials. The strategy is to consolidate oxide nanopowders into large sized nanocomposites without losing the nanostructure. Some of the specific scientific issues the research will elucidate are: the role of nanostructured length scales (grain sizes) and dissimilar phases (interfaces) on transparency and optoelectronic properties in bulk sized ceramics. If successful, these materials will be used for optical beam deflection and generation of giant optical pulses in devices ranging from consumer electronics to high powered lasers. In addition there is a detailed plan to develop workshop-like demonstrations for students who learn in different ways. These demonstrations will be conducted in various venues including university dormitories and high school classrooms in order to reach distinct student populations.
非技术描述:使用透明材料使光弯曲(折射)的能力在诸如照相机和望远镜的许多设备中是熟悉的和有用的。一种称为电光材料的特殊材料的光折射特性可以使用电场来控制。由于电场相对容易产生和改变,电光材料允许光路“在飞行中”改变。 如果电光响应速度更快或使用更小的场,电光材料将有许多新的应用。这个CAREER项目的目的是通过使用复合方法来扩展电光陶瓷的适用性。典型的陶瓷复合材料是不透明的,但是通过仔细控制它们的结构,将产生大的陶瓷材料,其透光性能可以通过施加电场来控制。这些材料应可用于各种消费电子产品,如数码相机和先进的应用,特别是在激光领域。作为综合教育工作的一部分,这项研究将通过讲习班式的示范来激励年轻的科学家和工程师。光与材料的相互作用相对容易演示,使研究能够为不同的学生群体带来生活。技术知识:折射率是最基本的光学性质之一?它控制光线被材质折射的程度。电光材料的折射率可以使用电场来控制。具有高电光响应的材料已经可用,但通常所需的高场和/或慢切换时间使它们对于许多应用是禁止的。这个CAREER项目将从具有不同特性的氧化物中生产大块异质结构,以便使用小的应用领域控制光学特性,而不会影响大的电光效应。明智地使用氧化物混合物(复合材料)可以调整反应,生产更多用途的材料。该策略是将氧化物纳米粉末合并成大尺寸的纳米复合材料而不失去纳米结构。该研究将阐明的一些具体科学问题是:纳米结构长度尺度(晶粒尺寸)和不同相(界面)对大块尺寸陶瓷的透明度和光电性能的作用。如果成功,这些材料将用于光束偏转和产生巨大的光脉冲,从消费电子产品到高功率激光器。此外,还有一个详细的计划,为以不同方式学习的学生开发类似研讨会的演示。这些示威活动将在大学宿舍和高中教室等不同地点进行,以接触不同的学生群体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Javier Garay其他文献

Pensar, debatir y aportar a las Relaciones Internacionales
彭萨,国际关系辩论
  • DOI:
    10.2307/j.ctv1rcf1kk
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Florent Frasson;Erli Margarita Marín Aranguren;Francisco Daniel Trejos Mateus;Javier Garay;Manuel Alejandro Rayran Cortés;Miguel Ángel Martínez;P. García
  • 通讯作者:
    P. García
A method of determining ablation depth from free surface velocities in laser induced ablation experiments
激光诱导烧蚀实验中根据自由表面速度确定烧蚀深度的方法
Prevention in routine general practice: activity patterns and potential promoting factors.
常规全科实践中的预防:活动模式和潜在促进因素。
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Josefina López;J. Torcal;Victor López;Javier Garay
  • 通讯作者:
    Javier Garay
Lipoblastoma: un tumor pediátrico infrecuente
  • DOI:
    10.1016/s0033-8338(02)77807-7
  • 发表时间:
    2002-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Agustín Nogués;Jorge Villanua;Javier Garay;Ariel Gutiérrez
  • 通讯作者:
    Ariel Gutiérrez

Javier Garay的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Javier Garay', 18)}}的其他基金

Rheology of Nanocrystalline Materials: Clarifying the Sliding Mechanism of Earthquakes
纳米晶材料的流变学:阐明地震的滑动机制
  • 批准号:
    1848651
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Rheology of Nanocrystalline Materials: Clarifying the Sliding Mechanism of Earthquakes
纳米晶材料的流变学:阐明地震的滑动机制
  • 批准号:
    1345130
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似海外基金

Porous Two-Dimensional Inorganic Semiconductors for Optoelectronic Devices
用于光电器件的多孔二维无机半导体
  • 批准号:
    DP240100961
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Projects
CAREER: Optoelectronic lab-on-a-chip technology for high content automated multiparametric physiological analyses of live cells
职业:用于活细胞高内涵自动化多参数生理分析的光电芯片实验室技术
  • 批准号:
    2339030
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Light-emitting devices for next-generation optoelectronic applications
用于下一代光电应用的发光器件
  • 批准号:
    DE240100417
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Early Career Researcher Award
Novel 2D material hybrid photonic crystal nanocavity for optoelectronic devices
用于光电器件的新型二维材料混合光子晶体纳米腔
  • 批准号:
    24K17627
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Organic optoelectronic neural networks
有机光电神经网络
  • 批准号:
    EP/Y020596/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
RII Track-4:@NASA: Process-Structure-Property Relationship of the Hybrid Manufactured Multifunctional Mechano-Luminescence-Optoelectronic Fibers
RII Track-4:@NASA:混合制造的多功能机械-发光-光电纤维的工艺-结构-性能关系
  • 批准号:
    2327493
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Deposition of novel transparent conducting thin films with unusual optoelectronic properties
具有不寻常光电特性的新型透明导电薄膜的沉积
  • 批准号:
    2888596
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Studentship
New Horizons in the Atomistic Simulation of Charge and Exciton Transport in Optoelectronic Materials
光电材料中电荷和激子输运原子模拟的新视野
  • 批准号:
    2868548
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Studentship
Post Transition Metal Oxides for Optoelectronic Applications (PRAETORIAN)
用于光电应用的后过渡金属氧化物 (PRAETORIAN)
  • 批准号:
    EP/Y019504/1
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
Ultrafast Action Spectroscopy of Hybrid States for Soft Optoelectronic Materials Engineering
用于软光电材料工程的杂化态超快作用光谱
  • 批准号:
    EP/X030822/1
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了