Instrumental Variable Methods for Observational Studies
观察研究的工具变量方法
基本信息
- 批准号:0961971
- 负责人:
- 金额:$ 14.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-01 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The instrumental variable (IV) method is an approach to estimating a causal relationship in the presence of unmeasured confounders. A central concern in most studies using the IV method is that the IV is not perfectly valid in the sense that it is correlated with unmeasured confounders. This project will contribute to improved methodology for using the IV method. The project will develop a new, more interpretable sensitivity analysis for IV studies that is calibrated to observed covariates. A new way of designing IV studies to make the study less sensitive to the proposed IV being invalid (i.e., correlated with unmeasured confounders) also will be developed. The approach will involve setting up a matched comparison between a group of subjects with a high level of the IV and a group of subjects with a low level of the IV in such a way that the IV is a strong predictor of the treatment that is received in the two groups. Finally, a new IV method for studies with binary outcomes will be developed that is easier to implement and more robust than existing methods.A main goal of many empirical studies in the social sciences is to provide evidence about the effects caused by policies or treatments. For practical and/or ethical reasons, most such studies are observational rather than randomized studies. A central difficulty for observational studies is that because treatments were not randomly assigned, the subjects receiving different treatments may not be comparable so differing outcomes after treatment may not be effects caused by the treatment. The instrumental variable (IV) method is an approach for estimating a causal relationship that can overcome unmeasured confounding. The basic idea is to use an "instrumental" variable to extract variation in the treatment that is unrelated to the unmeasured confounders, and then use this variation to estimate the causal effect of the treatment on the outcome. This project will provide ways to better assess sensitivity of results from using the IV methods to concerns that the proposed IV is related to unmeasured confounders (and thus not a valid IV), and better ways to make use of an IV when the outcome of the study is a binary variable. The project also will develop and disseminate freely available software for implementing the new methods. By offering rigorous analysis in complex setting otherwise not suited for experimentation, improved methodology for observational studies has the potential to lead to improved policies and practices of both public and private institutions.
工具变量(IV)方法是一种在存在未测量混杂因素的情况下估计因果关系的方法。在大多数使用IV方法的研究中,一个中心问题是IV不是完全有效的,因为它与未测量的混杂因素相关。本项目将有助于改进IV法的使用方法。该项目将为IV研究开发一种新的,更可解释的敏感性分析,该分析根据观察到的协变量进行校准。还将开发一种设计静脉注射研究的新方法,使研究对所提出的静脉注射无效(即与未测量的混杂因素相关)不那么敏感。该方法将涉及在一组高水平静脉注射的受试者和一组低水平静脉注射的受试者之间建立一个匹配的比较,以使静脉注射成为两组接受治疗的有力预测指标。最后,将开发一种新的用于二元结果研究的IV方法,该方法比现有方法更容易实施且更稳健。社会科学中许多实证研究的主要目标是提供有关政策或治疗所造成的影响的证据。出于实际和/或伦理原因,大多数此类研究都是观察性研究,而不是随机研究。观察性研究的一个主要困难是,由于治疗方法不是随机分配的,接受不同治疗的受试者可能没有可比性,因此治疗后的不同结果可能不是由治疗引起的。工具变量(IV)方法是一种估计因果关系的方法,可以克服不可测量的混杂。其基本思想是使用“工具”变量来提取治疗中与未测量混杂因素无关的变化,然后使用该变化来估计治疗对结果的因果影响。本项目将提供更好地评估结果敏感性的方法,从使用IV方法到考虑拟议的IV与未测量的混杂因素有关(因此不是有效的IV),以及当研究结果是二元变量时更好地使用IV的方法。该项目还将开发和传播用于实施新方法的免费软件。通过在复杂的环境中提供严格的分析,否则不适合实验,观察研究的改进方法有可能导致公共和私人机构的政策和实践的改进。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dylan Small其他文献
Test-negative designs with various reasons for testing: statistical bias and solution
具有各种测试原因的测试阴性设计:统计偏差和解决方案
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Mengxin Yu;K. Li;Nicholas Jewell;E. T. Tchetgen;Dylan Small;Xu Shi;Bingkai Wang - 通讯作者:
Bingkai Wang
Deterministic and Stochastic Prisoner&Apos;S Dilemma Games: Experiments in Interdependent Security
确定性和随机性囚徒
- DOI:
10.3386/t0341 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Howard C. Kunreuther;Gabriel Silvasi;Eric T. Bradlow;Dylan Small - 通讯作者:
Dylan Small
What motivates participants: a qualitative analysis of gamification and financial incentives to increase physical activity
- DOI:
10.1186/s12889-025-22717-0 - 发表时间:
2025-05-16 - 期刊:
- 影响因子:3.600
- 作者:
Eric Ryu;David Farraday;Alexander C. Fanaroff;Samantha Coratti;Neel P. Chokshi;Jingsan Zhu;Julia E. Szymczak;Louise B. Russell;Laurie Norton;Dylan Small;Kevin G. Volpp;Tamar Klaiman - 通讯作者:
Tamar Klaiman
Advancing Understanding of Cerebrovascular Hemodynamic Perturbations in Pediatric Cerebral Malaria Using a Modified Critical Closing Pressure Evaluation- A Prospective, Observational Study
- DOI:
10.1007/s12028-025-02245-w - 发表时间:
2025-04-21 - 期刊:
- 影响因子:3.600
- 作者:
Nicole F. O’Brien;Madiha Q. Raees;Hunter J. Wynkoop;Mengxin Yu;Dylan Small;Karl B. Seydel;Montfort Bernard Gushu;Tusekile Phiri;Sylvester June;Terrie E. Taylor - 通讯作者:
Terrie E. Taylor
Dylan Small的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dylan Small', 18)}}的其他基金
Causal Inference in Observational Studies
观察研究中的因果推理
- 批准号:
1260782 - 财政年份:2013
- 资助金额:
$ 14.47万 - 项目类别:
Standard Grant
相似国自然基金
Drp1—Variable结构域在继发性脊髓损伤中调节线粒体功能的机制研究
- 批准号:81974335
- 批准年份:2019
- 资助金额:54.0 万元
- 项目类别:面上项目
基于蛋白质组学和代谢组学整合分析的Paraconiothyrium variable GHJ-4降解木质素的分子机制
- 批准号:31200450
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing variable selection methods and post-selection inference under double-descent phenomena
开发双下降现象下的变量选择方法和选择后推理
- 批准号:
23K18471 - 财政年份:2023
- 资助金额:
$ 14.47万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Developing Effective Instructional Methods for Control Variable Strategies According to the Individual Characteristics of Science Learners
根据科学学习者的个体特征制定有效的控制变量策略教学方法
- 批准号:
22K20215 - 财政年份:2022
- 资助金额:
$ 14.47万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Longitudinal data subject to irregular observation: developing methods for variable selection, causal inference, and measurement error
不规则观察的纵向数据:开发变量选择、因果推断和测量误差的方法
- 批准号:
RGPIN-2021-02733 - 财政年份:2022
- 资助金额:
$ 14.47万 - 项目类别:
Discovery Grants Program - Individual
Novel p-Value Based Multiple Testing Methods for Variable Selection with False Discovery Rate Control
基于 p 值的新颖变量选择多重测试方法以及错误发现率控制
- 批准号:
2210687 - 财政年份:2022
- 资助金额:
$ 14.47万 - 项目类别:
Standard Grant
Simulation-based Methods for Large Dynamic Latent Variable Models with Unobserved Heterogeneity
具有不可观测异质性的大动态潜变量模型的基于仿真的方法
- 批准号:
RGPIN-2020-04161 - 财政年份:2022
- 资助金额:
$ 14.47万 - 项目类别:
Discovery Grants Program - Individual
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
- 批准号:
RGPIN-2019-04800 - 财政年份:2022
- 资助金额:
$ 14.47万 - 项目类别:
Discovery Grants Program - Individual
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
- 批准号:
RGPIN-2019-04800 - 财政年份:2021
- 资助金额:
$ 14.47万 - 项目类别:
Discovery Grants Program - Individual
Longitudinal data subject to irregular observation: developing methods for variable selection, causal inference, and measurement error
不规则观察的纵向数据:开发变量选择、因果推断和测量误差的方法
- 批准号:
RGPIN-2021-02733 - 财政年份:2021
- 资助金额:
$ 14.47万 - 项目类别:
Discovery Grants Program - Individual
Simulation-based Methods for Large Dynamic Latent Variable Models with Unobserved Heterogeneity
具有不可观测异质性的大动态潜变量模型的基于仿真的方法
- 批准号:
RGPIN-2020-04161 - 财政年份:2021
- 资助金额:
$ 14.47万 - 项目类别:
Discovery Grants Program - Individual
Complex variable methods in transport theory
输运理论中的复变量方法
- 批准号:
2474544 - 财政年份:2020
- 资助金额:
$ 14.47万 - 项目类别:
Studentship