Commutation Relations for SLE in Multiply Connected Domains and the Coupling Technique
多连通域中SLE的交换关系及耦合技术
基本信息
- 批准号:0963733
- 负责人:
- 金额:$ 15.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-29 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).This project aims at studying the geometric properties of Schramm-Loewner evolution (SLE) introduced by Oded Schramm. SLE describes conformal invariant random fractal curves in plane domains, which are the scaling limits of many interesting two dimensional statistical lattice models at critical temperature, e.g., percolation, Ising model, Gaussian free field. The relationship between SLE and Conformal Field Theory (CFT) has been established and well understood.The study of SLE itself helps people to gain better understanding of those lattice models and CFT.The project extensively uses the so-called coupling technique, which has been successful in proving the reversibility conjecture for chordal SLE and Duplantier?s duality conjecture about the boundary of SLE. The technique enables one to construct a global coupling of two SLE curves if they commute with each other. The PI plans to use the coupling technique to study SLE defined in multiply connected domains, which are important because many lattice models are naturally defined there. The properties of these lattice models indicate that any reasonablely defined SLE must satisfy commutation relation, and so the coupling technique could be applied to construct a global commutation coupling. The project focuses on SLE defined in doubly connected domains with a few marked boundary points. These SLE naturally relate with various lattice models in these domains, and they could be used to prove the reversibility of radial SLE.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。该项目旨在研究Oded Schramm提出的Schramm-Loewner演化(SLE)的几何性质。SLE描述了平面域中的共形不变随机分形曲线,这是许多有趣的二维统计晶格模型在临界温度下的标度极限,例如,渗流,伊辛模型,高斯自由场。SLE与共形场论(CFT)的关系已经建立并得到了很好的理解,SLE的研究本身有助于人们更好地理解那些格点模型和CFT。的关于SLE边界的对偶猜想。该技术使人们能够构建一个全局耦合的两个SLE曲线,如果他们相互交换。PI计划使用耦合技术来研究多连通域中定义的SLE,这很重要,因为许多晶格模型都是在那里自然定义的。这些格点模型的性质表明,任何合理定义的SLE都必须满足对易关系,因此耦合技术可以用来构造全局对易耦合。该项目的重点是SLE定义在双连通域与一些显着的边界点。这些SLE自然地与这些区域中的各种晶格模型联系在一起,并且它们可以用来证明径向SLE的可逆性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dapeng Zhan其他文献
Green’s functions for chordal SLE curves
- DOI:
10.1007/s00440-017-0802-0 - 发表时间:
2017-09-12 - 期刊:
- 影响因子:1.600
- 作者:
Mohammad A. Rezaei;Dapeng Zhan - 通讯作者:
Dapeng Zhan
Duality of chordal SLE
弦索 SLE 的二元性
- DOI:
10.1007/s00222-008-0132-z - 发表时间:
2007 - 期刊:
- 影响因子:3.1
- 作者:
Dapeng Zhan - 通讯作者:
Dapeng Zhan
Green’s function for cut points of chordal SLE attached with boundary arcs
附有边界弧的弦 SLE 割点的格林函数
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:1.4
- 作者:
Dapeng Zhan - 通讯作者:
Dapeng Zhan
Decomposition of backward SLE in the capacity parametrization
容量参数化中向后SLE的分解
- DOI:
10.1016/j.spl.2018.10.021 - 发表时间:
2017 - 期刊:
- 影响因子:0.8
- 作者:
Benjamin Mackey;Dapeng Zhan - 通讯作者:
Dapeng Zhan
Boundary Green's functions and Minkowski content measure of multi-force-point SLE$_\kappa(\underline\rho)$
多力点 SLE$_kappa(underline
ho)$ 的边界格林函数和 Minkowski 内容测度
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Dapeng Zhan - 通讯作者:
Dapeng Zhan
Dapeng Zhan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dapeng Zhan', 18)}}的其他基金
CAREER: Analysis of the Geometric Properties of the SLE Curves
职业:SLE 曲线的几何特性分析
- 批准号:
1056840 - 财政年份:2011
- 资助金额:
$ 15.64万 - 项目类别:
Continuing Grant
Commutation Relations for SLE in Multiply Connected Domains and the Coupling Technique
多连通域中SLE的交换关系及耦合技术
- 批准号:
0906690 - 财政年份:2009
- 资助金额:
$ 15.64万 - 项目类别:
Standard Grant
相似海外基金
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
- 批准号:
2315219 - 财政年份:2024
- 资助金额:
$ 15.64万 - 项目类别:
Standard Grant
Planning Grant: Developing capacity to attract diverse students to the geosciences: A public relations framework
规划补助金:培养吸引多元化学生学习地球科学的能力:公共关系框架
- 批准号:
2326816 - 财政年份:2024
- 资助金额:
$ 15.64万 - 项目类别:
Standard Grant
Investigating the Role of International Higher Education in Japan-UK Relations: An Analysis of the RENKEI University Network Partnership
调查国际高等教育在日英关系中的作用:仁庆大学网络伙伴关系分析
- 批准号:
24K16704 - 财政年份:2024
- 资助金额:
$ 15.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
- 批准号:
2346230 - 财政年份:2024
- 资助金额:
$ 15.64万 - 项目类别:
Standard Grant
Teaching Good Relations in the Land of Plenty: Iñupiat and Non-Iñupiat on the North Slope of Alaska
在鱼米之乡讲授良好关系:阿拉斯加北坡的伊尤皮亚特人和非伊尤皮亚特人
- 批准号:
ES/Y010310/1 - 财政年份:2024
- 资助金额:
$ 15.64万 - 项目类别:
Fellowship
Developmental relations between emotion input and emotion perception
情绪输入与情绪感知之间的发展关系
- 批准号:
2333886 - 财政年份:2024
- 资助金额:
$ 15.64万 - 项目类别:
Standard Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
- 批准号:
2346229 - 财政年份:2024
- 资助金额:
$ 15.64万 - 项目类别:
Standard Grant
A Study of Emerging Multilateralism in East Asia: Restructuring Multilateral Relations between Japan, South Korea, and the US since Nixon took office
东亚新兴多边主义研究:尼克松上台以来日韩美多边关系的重构
- 批准号:
23K11563 - 财政年份:2023
- 资助金额:
$ 15.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Russian expansion policy on the Nottheast Asia: Japan-Russia relations over the straits
俄罗斯对东北亚的扩张政策:日俄海峡关系
- 批准号:
23K00788 - 财政年份:2023
- 资助金额:
$ 15.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Maoin America's patio trasero: Sino-Latin American relations from the Soviet split to the American rapprochement
毛因美国的庭院特拉塞罗:中拉关系从苏联分裂到美国和解
- 批准号:
2887615 - 财政年份:2023
- 资助金额:
$ 15.64万 - 项目类别:
Studentship