NeTS: Medium: Collaborative Research: Shaping, Learning and Optimizing Dynamic Networks
NeTS:媒介:协作研究:塑造、学习和优化动态网络
基本信息
- 批准号:0964391
- 负责人:
- 金额:$ 48.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-04-01 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project develops, from the ground up, a new theoretical framework for analyzing and designing algorithms for dynamic ad-hoc wireless networks. This proposal embraces network dynamics as an opportunity to be exploited, not an adversity to be overcome. The approach is based on four inter-related thrusts:1. Incremental Topology Learning: Tracking changes in the network much more efficiently than re-learning entire topology, using sparse "error graph" representations.2. Topology and Traffic Shaping: Controlling the "effective" wireless network topology so that (i) at any instant of time it appears to be highly disconnected to scheduling algorithms, but retains global connectivity over time; and (ii) modifying traffic statistics to ensure statistical spatial correlation decay.3. Warm-starting Distributed Algorithms: Message-passing algorithms that can warm-start the optimization based on local knowledge of past solutions.4. Proteus - A Mobile Robot Testbed: This project validates its approach via implementation on a mobile robot testbed called Proteus, which is used to optimize algorithms in a practical setting.Broader Impact: Industry is involved in this research from the start, via the WNCG Affiliates program at UT. The research will be disseminated via publications in top-tier venues, industry interactions, and specially organized workshops. Both graduate students and undergraduate students, via a REU program at UT (with emphasis on recruiting women and minorities), get exposure to both real-world wireless networks (via the testbed), and cutting edge theory.
这个项目开发,从地面上,一个新的理论框架,分析和设计算法的动态ad-hoc无线网络。这一建议将网络动态视为一个可以利用的机会,而不是一个需要克服的逆境。该方法是基于四个相互关联的推力:1。增量拓扑学习:使用稀疏的“错误图”表示,跟踪网络中的变化比重新学习整个拓扑结构更有效。2.拓扑和流量整形:控制“有效的”无线网络拓扑,使得(i)在任何时刻,它看起来与调度算法高度断开,但随着时间的推移保持全局连接;以及(ii)修改业务统计以确保统计空间相关性衰减。热启动分布式算法:消息传递算法,可以根据过去的解决方案的本地知识进行热启动优化。4. Proteus -一个移动的机器人测试平台:该项目通过在一个名为Proteus的移动的机器人测试平台上实现来验证其方法,该平台用于在实际环境中优化算法。更广泛的影响:通过UT的WNCG附属项目,行业从一开始就参与了这项研究。 研究将通过顶级场所的出版物,行业互动和专门组织的研讨会进行传播。研究生和本科生都通过UT的REU项目(重点是招募女性和少数民族)接触到现实世界的无线网络(通过测试平台)和前沿理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sujay Sanghavi其他文献
Stratospheric chlorine activation in the Arctic winters 1995/96–2001/02 derived from GOME OClO measurements
1995/96–2001/02 北极冬季平流层氯活化来自 GOME OClO 测量
- DOI:
10.1016/j.asr.2003.08.069 - 发表时间:
2004 - 期刊:
- 影响因子:2.6
- 作者:
S. Kühl;W. Wilms;S. Beirle;C. Frankenberg;M. Grzegorski;J. Hollwedel;F. Khokhar;Sarit Kraus;U. Platt;Sujay Sanghavi;C. V. Friedeburg;T. Wagner - 通讯作者:
T. Wagner
Geometric Median (GM) Matching for Robust Data Pruning
用于稳健数据修剪的几何中值 (GM) 匹配
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Anish Acharya;I. Dhillon;Sujay Sanghavi - 通讯作者:
Sujay Sanghavi
Serving content with unknown demand: the high-dimensional regime
- DOI:
10.1007/s11134-015-9443-0 - 发表时间:
2015-04-12 - 期刊:
- 影响因子:0.700
- 作者:
Sharayu Moharir;Javad Ghaderi;Sujay Sanghavi;Sanjay Shakkottai - 通讯作者:
Sanjay Shakkottai
Learning Graphical Models for Hypothesis Testing
学习假设检验的图形模型
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Sujay Sanghavi;V. Tan;A. Willsky - 通讯作者:
A. Willsky
In-Context Learning with Transformers: Softmax Attention Adapts to Function Lipschitzness
使用 Transformers 进行上下文学习:Softmax Attention 适应函数 Lipschitzness
- DOI:
10.48550/arxiv.2402.11639 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Liam Collins;Advait Parulekar;Aryan Mokhtari;Sujay Sanghavi;Sanjay Shakkottai - 通讯作者:
Sanjay Shakkottai
Sujay Sanghavi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sujay Sanghavi', 18)}}的其他基金
Collaborative Research: EnCORE: Institute for Emerging CORE Methods in Data Science
合作研究:EnCORE:数据科学新兴核心方法研究所
- 批准号:
2217069 - 财政年份:2022
- 资助金额:
$ 48.75万 - 项目类别:
Continuing Grant
HDR TRIPODS: UT Austin Institute on the Foundations of Data Science
HDR TRIPODS:UT Austin 数据科学基础研究所
- 批准号:
1934932 - 财政年份:2019
- 资助金额:
$ 48.75万 - 项目类别:
Continuing Grant
AF: Medium: Dropping Convexity: New Algorithms, Statistical Guarantees and Scalable Software for Non-convex Matrix Estimation
AF:中:降低凸性:用于非凸矩阵估计的新算法、统计保证和可扩展软件
- 批准号:
1564000 - 财政年份:2016
- 资助金额:
$ 48.75万 - 项目类别:
Continuing Grant
CIF: Medium: Collaborative Research: New Approaches to Robustness in High-Dimensions
CIF:中:协作研究:高维鲁棒性的新方法
- 批准号:
1302435 - 财政年份:2013
- 资助金额:
$ 48.75万 - 项目类别:
Continuing Grant
CAREER: Networks and Statistical Inference: New Connections and Algorithms
职业:网络和统计推断:新连接和算法
- 批准号:
0954059 - 财政年份:2010
- 资助金额:
$ 48.75万 - 项目类别:
Continuing Grant
NetSE: Small: Social Networks in the Real World: From Sensing to Structure Analysis
NetSE:小型:现实世界中的社交网络:从感知到结构分析
- 批准号:
1017525 - 财政年份:2010
- 资助金额:
$ 48.75万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
- 批准号:
2312978 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Towards High-Performing LoRa with Embedded Intelligence on the Edge
协作研究:NeTS:中:利用边缘嵌入式智能实现高性能 LoRa
- 批准号:
2312676 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312835 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: An Integrated Multi-Time Scale Approach to High-Performance, Intelligent, and Secure O-RAN based NextG
合作研究:NeTS:Medium:基于 NextG 的高性能、智能和安全 O-RAN 的集成多时间尺度方法
- 批准号:
2312447 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
- 批准号:
2312711 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312836 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312834 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: An Integrated Multi-Time Scale Approach to High-Performance, Intelligent, and Secure O-RAN based NextG
合作研究:NeTS:Medium:基于 NextG 的高性能、智能和安全 O-RAN 的集成多时间尺度方法
- 批准号:
2312448 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Towards High-Performing LoRa with Embedded Intelligence on the Edge
协作研究:NeTS:中:利用边缘嵌入式智能实现高性能 LoRa
- 批准号:
2312674 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
- 批准号:
2312710 - 财政年份:2023
- 资助金额:
$ 48.75万 - 项目类别:
Standard Grant