SHF: Medium: Collaborative Research: Chorus: Dynamic Isolation in Shared-Memory Parallelism
SHF:媒介:协作研究:Chorus:共享内存并行中的动态隔离
基本信息
- 批准号:0964443
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Expressing parallel computations over complex shared-memory data structures has always been a vexing issue in parallel programming. On one hand, popular task-based programming models do not provide first-class abstractions for isolation and locality. On the other, Actor-based programming naturally captures locality but is unsuitable for computations on large shared data structures. The present project partially bridges the gap between these two styles of parallelism through Chorus, a new programming model for parallel computations over unstructured, continually changing shared-memory data structures. The key abstraction of Chorus is an object assembly: a local, isolated region in the heap equipped with a thread of control. Assemblies can imperatively modify themselves, merge with other assemblies, and split into smaller assemblies?through these operations over assemblies, Chorus captures unpredictable, dynamic changes to parallelism. This makes Chorus an ideal programming model for many irregular data-parallel applications (e.g., meshing, clustering), which exhibit fine-grained data-parallelism in typical executions but no parallelism in the worst case, and whose parallelization remains an open and difficult challenge.The predicted outcomes of the project include new insights into the semantic foundations of Chorus and new language constructs integrating Chorus with existing abstractions for asynchronous task creation, directed synchronization, and locality. On the system-building end, the project will integrate Chorus with the Habanero Java parallel programming language, and implement a compiler and runtime for the resultant language. The performance and programmability of this language will be thoroughly evaluated using benchmarks largely consisting of emerging irregular workloads.
在复杂的共享内存数据结构上表示并行计算一直是并行编程中的一个棘手问题。一方面,流行的基于任务的编程模型不提供隔离和局部性的第一类抽象。另一方面,基于Actor的编程自然地捕获局部性,但不适合大型共享数据结构上的计算。目前的项目部分桥梁之间的差距这两种风格的并行通过合唱团,一个新的编程模型,并行计算的非结构化,不断变化的共享内存数据结构。Chorus的关键抽象是一个对象组装:堆中的一个局部的、隔离的区域,配备了一个控制线程。程序集是否可以强制修改自身、与其他程序集合并以及拆分为更小的程序集?通过对程序集的这些操作,Chorus捕获了不可预测的、动态的并行性变化。这使得Chorus成为许多不规则数据并行应用程序的理想编程模型(例如,网格,集群),表现出细粒度的数据并行在典型的执行,但没有并行在最坏的情况下,其并行化仍然是一个开放的和困难的challenges.The项目的预测成果包括新的洞察合唱团的语义基础和新的语言结构集成合唱团与现有的抽象异步任务创建,定向同步和本地。在系统构建端,该项目将把Chorus与Habanero Java并行编程语言集成,并为结果语言实现编译器和运行时。该语言的性能和可编程性将使用主要由新兴的不规则工作负载组成的基准进行彻底评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Swarat Chaudhuri其他文献
L G ] 1 0 A pr 2 01 9 Programmatically Interpretable Reinforcement Learning
LG ] 1 0 A pr 2 01 9 程序化可解释的强化学习
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
A. Verma;VijayaraghavanMurali;Rishabh Singh;Pushmeet Kohli;Swarat Chaudhuri - 通讯作者:
Swarat Chaudhuri
Data-Driven Program Completion
数据驱动的程序完成
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yanxin Lu;Swarat Chaudhuri;C. Jermaine;David Melski - 通讯作者:
David Melski
On-the-Fly Reachability and Cycle Detection for Recursive State Machines
递归状态机的动态可达性和循环检测
- DOI:
10.1007/978-3-540-31980-1_5 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
R. Alur;Swarat Chaudhuri;K. Etessami;P. Madhusudan - 通讯作者:
P. Madhusudan
A fixpoint calculus for local and global program flows
局部和全局程序流的不动点演算
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
R. Alur;Swarat Chaudhuri;P. Madhusudan - 通讯作者:
P. Madhusudan
Controller synthesis with inductive proofs for piecewise linear systems: An SMT-based algorithm
分段线性系统的控制器综合与归纳证明:基于 SMT 的算法
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Zhenqi Huang;Yu Wang;S. Mitra;G. Dullerud;Swarat Chaudhuri - 通讯作者:
Swarat Chaudhuri
Swarat Chaudhuri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Swarat Chaudhuri', 18)}}的其他基金
SHF: Medium: Neurosymbolic Agents for Formal Theorem-Proving
SHF:介质:用于形式定理证明的神经符号代理
- 批准号:
2403211 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316161 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Semantics-Aware Neural Models of Code
合作研究:SHF:媒介:代码的语义感知神经模型
- 批准号:
2212559 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Bridging Automated Formal Reasoning and Continuous Optimization for Provably Safe Deep Learning
SHF:中:协作研究:连接自动形式推理和持续优化以实现可证明安全的深度学习
- 批准号:
2033851 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Bridging Automated Formal Reasoning and Continuous Optimization for Provably Safe Deep Learning
SHF:中:协作研究:连接自动形式推理和持续优化以实现可证明安全的深度学习
- 批准号:
1901284 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SHF: Small: Computer-Aided Grading, Feedback, and Assignment Creating in Massive Online Programming Courses
SHF:小型:大规模在线编程课程中的计算机辅助评分、反馈和作业创建
- 批准号:
1320860 - 财政年份:2013
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Marrying Program Analysis and Numerical Search
SHF:媒介:协作研究:程序分析与数值搜索的结合
- 批准号:
1162076 - 财政年份:2012
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CAREER: Robustness Analysis of Uncertain Programs: Theory, Algorithms, and Tools
职业:不确定程序的鲁棒性分析:理论、算法和工具
- 批准号:
1156059 - 财政年份:2011
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
SHF: Medium: Collaborative Research: Chorus: Dynamic Isolation in Shared-Memory Parallelism
SHF:媒介:协作研究:Chorus:共享内存并行中的动态隔离
- 批准号:
1242507 - 财政年份:2011
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CAREER: Robustness Analysis of Uncertain Programs: Theory, Algorithms, and Tools
职业:不确定程序的鲁棒性分析:理论、算法和工具
- 批准号:
0953507 - 财政年份:2010
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403409 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: High-Performance, Verified Accelerator Programming
合作研究:SHF:中:高性能、经过验证的加速器编程
- 批准号:
2313024 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
- 批准号:
2311295 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant