SHF: Medium: Collaborative Research: System Level Self Correction Using On-Chip Micro Sensor Network and Autonomous Feedback Control

SHF:中:协作研究:使用片上微传感器网络和自主反馈控制的系统级自我校正

基本信息

  • 批准号:
    0964514
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

With technology scaling and increasing integration density in the nanometer technology regime, design considerations for yield and reliability have become critical. The objective of this collaborative research is to explore low-overhead formal design methodology with distributed micro-scale sensor network and systematic feedback control to achieve auto-curing of digital, analog and mixed-signal electronic systems under large process and temporal variations. Such auto-curing approaches will play a key role in preventing yield loss for nanoscale designs, while ensuring reliability of operation and low power dissipation. The research investigates self-curing concepts/techniques for logic circuits, digital signal processing (DSP) units, embedded memory and analog components using appropriate variation sensing and compensation techniques to achieve high yield with optimal power/die-area overhead. It also explores system-level self-curing approaches using global parameter sensor and global controller to determine optimal compensation of mixed-signal cores under power constraint. To realize the curing methodologies in an automatic synthesis environment, the research will aim at developing appropriate Computer-Aided Design tools and a library of self-correcting mixed-signal cores. If successful, it will help the semiconductor industry deliver complex nanoelectronic systems with high reliability, low power and high yield. The proposed research will integrate education and training through course development, summer research program for undergraduates, and senior project design.
随着纳米技术规模的扩大和集成密度的增加,良率和可靠性的设计考虑变得至关重要。本合作研究的目的是探索采用分布式微尺度传感器网络和系统反馈控制的低开销形式化设计方法,以实现数字、模拟和混合信号电子系统在大过程和时间变化下的自动固化。这种自动固化方法将在防止纳米级设计的良率损失,同时确保运行可靠性和低功耗方面发挥关键作用。该研究研究了逻辑电路、数字信号处理(DSP)单元、嵌入式存储器和模拟元件的自固化概念/技术,使用适当的变化传感和补偿技术,以实现最佳功率/模面积开销的高产量。本文还探讨了系统级自固化方法,利用全局参数传感器和全局控制器来确定功率约束下混合信号核心的最佳补偿。为了在自动合成环境中实现固化方法,研究将致力于开发适当的计算机辅助设计工具和自校正混合信号核心库。如果成功,它将有助于半导体行业提供高可靠性、低功耗和高产量的复杂纳米电子系统。建议的研究将通过课程开发、本科生暑期研究计划和高级项目设计来整合教育和培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Swarup Bhunia其他文献

Arbitrary Two-Pattern Delay Testing Using a Low-Overhead Supply Gating Technique

Swarup Bhunia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Swarup Bhunia', 18)}}的其他基金

Collaborative Research: SaTC: EDU: Hardware Security Education for All Through Seamless Extension of Existing Curricula
合作研究:SaTC:EDU:通过无缝扩展现有课程为所有人提供硬件安全教育
  • 批准号:
    2114165
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Distributed Electro-Mechanical Transmitters for Adaptive and Power-Efficient Wireless Communications in RF-Denied Environments
合作研究:分布式机电发射器,用于射频干扰环境中的自适应和高能效无线通信
  • 批准号:
    2104195
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Planning Grant: Engineering Research Center for Intelligent Sensing, Mapping, and Forecasting of Water Quality for Sustainable Coastal Ecosystems (iCoast)
规划资助:可持续沿海生态系统水质智能传感、测绘和预测工程研究中心(iCoast)
  • 批准号:
    1936864
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SURPASS: NSF SFS Unique Scholarship Program in Hardware and Systems Security
合作研究:SURPASS:NSF SFS 硬件和系统安全独特奖学金计划
  • 批准号:
    1662976
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Support for the International Symposium on Hardware-Oriented Security and Trust (HOST)
支持面向硬件的安全与信任国际研讨会 (HOST)
  • 批准号:
    1720541
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: Materials authentication using nuclear quadrupole resonance spectroscopy
SHF:媒介:合作研究:使用核四极共振光谱进行材料认证
  • 批准号:
    1563924
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
TUES:Type1:Collaborative: An Integrative Hands-on Approach to Security Education for Undergraduate Students
星期二:类型 1:协作:本科生安全教育的综合实践方法
  • 批准号:
    1603480
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SaTC: STARSS: Collaborative: IPTrust: A Comprehensive Framework for IP Integrity Validation
SaTC:STARSS:协作:IPTrust:IP 完整性验证的综合框架
  • 批准号:
    1603483
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: An Integrative and Scalable Approach to Embedded Hardware Protection
职业生涯:一种集成且可扩展的嵌入式硬件保护方法
  • 批准号:
    1603475
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SaTC: STARSS: Collaborative: IPTrust: A Comprehensive Framework for IP Integrity Validation
SaTC:STARSS:协作:IPTrust:IP 完整性验证的综合框架
  • 批准号:
    1441705
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403135
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403409
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: High-Performance, Verified Accelerator Programming
合作研究:SHF:中:高性能、经过验证的加速器编程
  • 批准号:
    2313024
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311295
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了