RI: Medium: Collaborative Research: Recognition of Materials

RI:媒介:协作研究:材料识别

基本信息

  • 批准号:
    0964562
  • 负责人:
  • 金额:
    $ 39.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

We live in a world made of diverse materials whose variations in appearance enrich our visual experience. It is also this variability of materials that adds daunting complexity to image understanding. This research program aims to establish the theoretical and computational foundation for automatic visual understanding and recognition of real-world materials. The program tackles this challenging problem from three key aspects, namely, deriving 1) novel hybrid physically-based and data-driven representations of the spatial, angular, spectral, temporal, and scale variations of material appearance, 2) active and passive methods for estimating the values of physically-based parameters that govern material appearance, and 3) single-image material recognition methods that leverage physically-based optical parameters as priors or invariants to guide machine learning techniques. These research thrusts lead to a comprehensive set of computational tools to recognize materials in real-world images despite their complex appearance variations, such as recognizing rusted metals, discerning soft cloth from hard concrete, identifying different fat content of milks, and labeling image regions with material traits like soft, hard, rough, and heavy.The capabilities resulting from this program are crucial to a broad range of scenarios, for instance, to enable humanoid robots to understand that it should not squeeze the soft hands of a child, autonomous vehicles to understand what regions to avoid in a rugged terrain, visual analyses of tissues to help medical diagnosis, and automated inspection systems to reliably discover sub-standard quality food to prevent ill-health. The PIs work with research groups in these specific application areas to closely integrate the results from this project into their efforts. The results from this research are also broadly disseminated via publications, websites, databases, new courses and symposiums.
我们生活在一个由各种材料组成的世界里,这些材料的外观变化丰富了我们的视觉体验。材料的这种可变性也给图像理解增加了令人生畏的复杂性。该研究项目旨在为现实世界材料的自动视觉理解和识别建立理论和计算基础。该计划从三个关键方面解决了这一具有挑战性的问题,即:1)材料外观的空间,角度,光谱,时间和尺度变化的新型混合物理和数据驱动表示,2)用于估计控制材料外观的物理参数值的主动和被动方法,以及3)利用基于物理的光学参数作为先验或不变量来指导机器学习技术的单图像材料识别方法。这些研究推动了一套全面的计算工具来识别真实世界图像中的材料,尽管它们具有复杂的外观变化,例如识别生锈的金属,从坚硬的混凝土中辨别软布,识别牛奶的不同脂肪含量,以及用软,硬,粗糙和沉重等材料特性标记图像区域。例如,使人形机器人能够理解它不应该挤压儿童柔软的手,自动驾驶汽车能够理解在崎岖的地形中应该避开哪些区域,对组织进行视觉分析以帮助医疗诊断,以及自动检测系统能够可靠地发现质量不合格的食品以防止疾病。PI与这些特定应用领域的研究小组合作,将该项目的结果紧密结合到他们的工作中。这项研究的结果还通过出版物、网站、数据库、新课程和研讨会广泛传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Srinivasa Narasimhan其他文献

Srinivasa Narasimhan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Srinivasa Narasimhan', 18)}}的其他基金

CPS: TTP Option: Medium: Discovering and Resolving Anomalies in Smart Cities
CPS:TTP 选项:中:发现并解决智慧城市中的异常情况
  • 批准号:
    2038612
  • 财政年份:
    2020
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Standard Grant
RI: Medium: To Sense or Not to Sense: Energy Efficient Adaptive Sensing for Autonomous Systems
RI:中:感知或不感知:自主系统的节能自适应传感
  • 批准号:
    1900821
  • 财政年份:
    2019
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Photo-Scatterography: Unraveling Scattered Photons for Bio-Imaging
合作研究:计算光散射术:解开生物成像的散射光子
  • 批准号:
    1730147
  • 财政年份:
    2018
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Continuing Grant
CPS: Synergy: TTP Option: Anytime Visual Scene Understanding for Heterogeneous and Distributed Cyber-Physical Systems
CPS:协同:TTP 选项:异构和分布式网络物理系统的随时视觉场景理解
  • 批准号:
    1446601
  • 财政年份:
    2015
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Standard Grant
CAREER: Making Computer Vision Successful in Scattering Media
职业:使计算机视觉在散射媒体领域取得成功
  • 批准号:
    0643628
  • 财政年份:
    2007
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Continuing Grant
Collaborative Research: Fast and Accurate Volumetric Rendering of Scattering Phenomena in Computer Graphics
合作研究:计算机图形学中散射现象的快速准确体积渲染
  • 批准号:
    0541307
  • 财政年份:
    2006
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313149
  • 财政年份:
    2023
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Continuing Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312373
  • 财政年份:
    2023
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
  • 批准号:
    2312955
  • 财政年份:
    2023
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
  • 批准号:
    2313137
  • 财政年份:
    2023
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313150
  • 财政年份:
    2023
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了