RI: Medium: To Sense or Not to Sense: Energy Efficient Adaptive Sensing for Autonomous Systems
RI:中:感知或不感知:自主系统的节能自适应传感
基本信息
- 批准号:1900821
- 负责人:
- 金额:$ 120万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sensing and computation have been crucial to the significant progress in semi- and fully-autonomous vehicles and robots. Proliferation of many types of sensors (LIDARs, cameras, RADARs, etc.) and the advent of compute-heavy and data-hungry deep-learning approaches have increased the performance of autonomous systems by leaps and bounds. But the wide variety of sensors differ in terms of their performance, cost, and operational difficulty. Thus, specific sets of sensors are chosen for a particular task on a particular robot. This horses-for-courses approach often results in one-off systems that are incapable of adapting to many tasks or robots. Thus, to ensure safety and reliability, multi-tasking systems like autonomous vehicles have resorted to over-engineering, with upwards of 15 sensors and multiple GPUs/CPUs in any car. And, to make matters worse, many of the sensed data is eventually discarded as unwanted background. Thus, while the energy footprint of sensing and computations is increasing at an alarming rate, the flexibility or adaptability of these systems is still lacking. Much of this state of affairs can be attributed to the fact that sensors and algorithms face vastly different hardware and software challenges and are hence designed, developed, and manufactured in separate academic units or industries. This project takes a different approach: adaptively sense mostly (if not only) quantities which help solve the task accurately and within the allotted time. In other words, this project advocates folding adaptive and flexible sensing within a learning framework for autonomous systems. This is achieved by co-design and co-execution of sensing and algorithms to maximize accuracy and flexibility while minimizing expended energy and cost. The approach is motivated by how humans decide what, where, when, and how to sense and apply that to a robot learning framework. Research and education are closely integrated in a diverse and inclusive environment.The project consists of three fundamental research thrusts. Thrust 1: Development of highly novel and fully adaptive design and physical realization of 3D optical sensors. This thrust includes a fundamental mathematical framework that determines the optimal set of emitted and measured rays to achieve a particular task at hand. This is the mathematical foundation for developing a new class of sensors that detect and characterize obstacles---a time critical task of any autonomous system---with maximum energy efficiency, minimal latency (i.e., near-instantly) and with virtually no separate computation. Thrust 2: Novel decision-making framework that efficiently controls the adaptive sensors for the task at hand. This includes determining where and when to sense and adapting behavior policies accordingly. Thrust 3: Support the robot learning framework by learning and interacting with humans. The project will demonstrate the generality of adaptive sensing using three disparate autonomous systems that have broad societal impact: a) autonomous vehicles, b) assistive robots, and c) robots in manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传感和计算对于半自动和全自动车辆和机器人的重大进展至关重要。许多类型的传感器(激光雷达、照相机、雷达等)的激增计算量大、数据量大的深度学习方法的出现,使自治系统的性能得到了突飞猛进的提高。但是各种各样的传感器在性能、成本和操作难度方面各不相同。因此,为特定机器人上的特定任务选择特定的传感器组。这种以马换道的方法通常会导致一次性系统无法适应许多任务或机器人。因此,为了确保安全性和可靠性,像自动驾驶汽车这样的多任务系统已经采取了过度设计,在任何汽车中都有超过15个传感器和多个GPU/CPU。而且,更糟糕的是,许多感测到的数据最终作为不需要的背景而被丢弃。因此,虽然传感和计算的能量足迹正在以惊人的速度增加,但这些系统仍然缺乏灵活性或适应性。这种状况在很大程度上可以归因于传感器和算法面临着截然不同的硬件和软件挑战,因此在不同的学术单位或行业中设计,开发和制造。 这个项目采取了一种不同的方法:自适应地感知大多数(如果不是唯一的话)有助于在分配的时间内准确解决任务的量。换句话说,该项目倡导在自主系统的学习框架内折叠自适应和灵活的传感。这是通过传感和算法的共同设计和共同执行来实现的,以最大限度地提高准确性和灵活性,同时最大限度地减少消耗的能源和成本。这种方法的动机是人类如何决定什么、在哪里、何时以及如何感知并将其应用于机器人学习框架。研究和教育在一个多元化和包容性的环境中紧密结合。该项目包括三个基本研究方向。 目标1:开发高度新颖和完全自适应的3D光学传感器设计和物理实现。这一目标包括一个基本的数学框架,该框架确定发射和测量的最佳射线集,以实现手头的特定任务。这是开发一类新的传感器的数学基础,这些传感器检测和表征障碍物-任何自主系统的时间关键任务-具有最大的能量效率,最小的延迟(即,几乎立即)并且实际上没有单独的计算。目标2:新型决策框架,可有效控制手头任务的自适应传感器。这包括确定在何处以及何时感测并相应地调整行为策略。目标3:通过学习和与人类互动来支持机器人学习框架。 该项目将使用具有广泛社会影响的三种不同自主系统来展示自适应传感的通用性:a)自主车辆,B)辅助机器人,以及c)制造业机器人。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deconvolving Diffraction for Fast Imaging of Sparse Scenes
- DOI:10.1109/iccp51581.2021.9466266
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Mark Sheinin;Matthew O'Toole;S. Narasimhan
- 通讯作者:Mark Sheinin;Matthew O'Toole;S. Narasimhan
Traffic4D: Single View Longitudinal 4D Reconstruction of Repetitious Activity using Self-Supervised Experts
Traffic4D:使用自我监督专家对重复活动进行单视图纵向 4D 重建
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Li, Fangyu;Reddy, N. Dinesh;Chen, Xudong;Narasimhan, Srinivasa G.
- 通讯作者:Narasimhan, Srinivasa G.
Holocurtains: Programming Light Curtains via Binary Holography
Holocurtains:通过二元全息术对光幕进行编程
- DOI:10.1109/cvpr52688.2022.01736
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Chan, Dorian;Narasimhan, Srinivasa G.;O'Toole, Matthew
- 通讯作者:O'Toole, Matthew
Active Perception using Light Curtains for Autonomous Driving
- DOI:10.1007/978-3-030-58558-7_44
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Siddharth Ancha;Yaadhav Raaj;Peiyun Hu;S. Narasimhan;David Held
- 通讯作者:Siddharth Ancha;Yaadhav Raaj;Peiyun Hu;S. Narasimhan;David Held
Active Safety Envelopes using Light Curtains with Probabilistic Guarantees
使用具有概率保证的光幕的主动安全包络
- DOI:10.15607/rss.2021.xvii.045
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Ancha, Siddharth;Pathak, Gaurav;Narasimhan, Srinivasa;Held, David
- 通讯作者:Held, David
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srinivasa Narasimhan其他文献
Srinivasa Narasimhan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srinivasa Narasimhan', 18)}}的其他基金
CPS: TTP Option: Medium: Discovering and Resolving Anomalies in Smart Cities
CPS:TTP 选项:中:发现并解决智慧城市中的异常情况
- 批准号:
2038612 - 财政年份:2020
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: Computational Photo-Scatterography: Unraveling Scattered Photons for Bio-Imaging
合作研究:计算光散射术:解开生物成像的散射光子
- 批准号:
1730147 - 财政年份:2018
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
CPS: Synergy: TTP Option: Anytime Visual Scene Understanding for Heterogeneous and Distributed Cyber-Physical Systems
CPS:协同:TTP 选项:异构和分布式网络物理系统的随时视觉场景理解
- 批准号:
1446601 - 财政年份:2015
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: Recognition of Materials
RI:媒介:协作研究:材料识别
- 批准号:
0964562 - 财政年份:2010
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
CAREER: Making Computer Vision Successful in Scattering Media
职业:使计算机视觉在散射媒体领域取得成功
- 批准号:
0643628 - 财政年份:2007
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: Fast and Accurate Volumetric Rendering of Scattering Phenomena in Computer Graphics
合作研究:计算机图形学中散射现象的快速准确体积渲染
- 批准号:
0541307 - 财政年份:2006
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
相似海外基金
RII Track-4:@NASA: Bluer and Hotter: From Ultraviolet to X-ray Diagnostics of the Circumgalactic Medium
RII Track-4:@NASA:更蓝更热:从紫外到 X 射线对环绕银河系介质的诊断
- 批准号:
2327438 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344489 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321102 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
- 批准号:
2321045 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321103 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant