Frobenius Splitting in Algebraic Geometry, Commutative Algebra, and Representation Theory
代数几何、交换代数和表示论中的弗罗贝尼乌斯分裂
基本信息
- 批准号:0968646
- 负责人:
- 金额:$ 2.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-03-01 至 2012-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The property of a variety or ring being F-split (under mild conditions, equivalently F-pure) is an extremely powerful condition. Perhaps most famously, in the 1980s, these techniques were applied in the study of Schubert varieties, and continue to be actively used in the study of algebraic groups. On the other hand, in the 1970s, these techniques were used to prove fundamental results about rings of invariants by reductive groups. These methods anticipated the fundamental ideas behind the tight closure theory. In the 1990s, it was discovered that there is a precise dictionary between some of the notions coming from the minimal model program, and invariants defined by variants of Frobenius splitting and tight closure theory (a correspondence that is still not fully understood). Some of these methods are also related to the study of vector bundles in characteristic p, another active area of research which has had numerous applications.This conference that will take place at the University of Michigan, Ann Arbor, May 17th--May 22nd, 2010. The organizing committee consists of:M. Blickle (Universitat Duisburg-Essen), M. Brion (Universite de Grenoble), F. Enescu (Georgia State University), S. Kumar (University of North Carolina at Chapel Hill), M. Mustata (University of Michigan), K.Schwede (University of Michigan). The conference will focus on Frobenius splitting and related notions, methods, and applications to the following important areas of mathematics: the representation theory of algebraic groups, commutative algebra, and higher dimensional algebraic geometry. The conference will bring researchers together and stimulate communication between the various groups (communication which previously has been somewhat limited). It is expected that this conference will impact the mathematical community in a number of ways. Firstly, by exposing researchers to new potential applications of their own work and also to different points of view, the meeting will inspire new communication, collaboration and research. The participants of the conference will have different backgrounds, and thus many of the talks will necessarily be focused at a non-expert audience. Therefore, secondly, the talks given will be suitable for young mathematicians, especially graduate students and junior faculty. Finally, we also expect to attract other established researchers interested in learning about these techniques.
一个簇或环的性质是F-分裂的(在温和条件下,等价于F-纯的)是一个非常强大的条件。 也许最著名的是,在20世纪80年代,这些技术被应用于舒伯特簇的研究,并继续积极地用于代数群的研究。 另一方面,在20世纪70年代,这些技巧被用来证明约化群不变量环的基本结果。 这些方法预见了紧闭理论背后的基本思想。 在20世纪90年代,人们发现来自最小模型程序的一些概念与由弗罗贝纽斯分裂和紧闭理论的变体定义的不变量(一种尚未完全理解的对应关系)之间存在一个精确的字典。 这些方法中的一些也与特征p中的向量丛的研究有关,这是另一个活跃的研究领域,已经有了许多应用。这个会议将于2010年5月17日-5月22日在密歇根大学安阿伯举行。 组委会由以下人员组成:M. Blickle(Universitat Duisburg-Essen),M. Brion(Universite de Grenoble),F. Enescu(格鲁吉亚州立大学),S.库马尔(北卡罗来纳州查佩尔山大学),M。Mustata(密歇根大学),K.Schwede(密歇根大学)。会议将重点讨论Frobenius分裂和相关的概念,方法和应用到以下重要的数学领域:代数群的表示理论,交换代数和高维代数几何。这次会议将把研究人员聚集在一起,促进各个群体之间的交流(以前的交流是有限的)。 预计这次会议将影响数学界在许多方面。 首先,通过让研究人员了解他们自己工作的新的潜在应用以及不同的观点,会议将激发新的沟通,合作和研究。 会议的参与者将有不同的背景,因此许多会谈将必然集中在非专家观众。 因此,第二,讲座将适合年轻的数学家,特别是研究生和初级教师。 最后,我们还希望吸引其他有兴趣学习这些技术的知名研究人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mircea Mustata其他文献
An irrational variant of the congruent number problem
全等数问题的无理变体
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata;Yusuke Nakamura;Jerome Dimabayao - 通讯作者:
Jerome Dimabayao
The moduli spaces of stable parabolic λ-connections and their canonical coordinates (Joint works with M. Inaba and with S. Szabo)
稳定抛物线 λ 连接的模空间及其规范坐标(与 M. Inaba 和 S. Szabo 联合工作)
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata;Ken-ichi Yoshida;Masa-Hiko Saito - 通讯作者:
Masa-Hiko Saito
A boundedness conjecture for minimal log discrepancies on a fixed germ
固定细菌上最小对数差异的有界猜想
- DOI:
10.1090/conm/712/14351 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata;Yusuke Nakamura - 通讯作者:
Yusuke Nakamura
The ring of modular forms of O(2,4;Z) with characters
带字符的 O(2,4;Z) 模形式环
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata;Yusuke Nakamura;Jerome Dimabayao;Atsuhira Nagano and Kazushi Ueda - 通讯作者:
Atsuhira Nagano and Kazushi Ueda
Mircea Mustata的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mircea Mustata', 18)}}的其他基金
D-modules and invariants of singularities
D 模和奇点不变量
- 批准号:
2301463 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Hodge Filtration on Local Cohomology and Minimal Exponents
局部上同调和最小指数的 Hodge 过滤
- 批准号:
2001132 - 财政年份:2020
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Hodge-Theoretic Generalizations of Multiplier Ideals
乘数理想的霍奇理论推广
- 批准号:
1701622 - 财政年份:2017
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Questions on Singularities and Adjoint Linear Systems
关于奇点和伴随线性系统的问题
- 批准号:
1401227 - 财政年份:2014
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
- 批准号:
1265256 - 财政年份:2013
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Invariants of Singularities in Zero and Positive Characteristic
零特征和正特征中奇点的不变量
- 批准号:
1068190 - 财政年份:2011
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
相似海外基金
I-Corps: Two-step water splitting method using an electrochemical Zinc/Zinc Oxide cycle to produce hydrogen
I-Corps:使用电化学锌/氧化锌循环生产氢气的两步水分解方法
- 批准号:
2405325 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Leveraging Ray Casting for Task Splitting over Processing Elements
利用光线投射对处理元素进行任务拆分
- 批准号:
24K20782 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of structurally controlled porous metal oxide nanoarchitectures of photoanode for efficient solar-driven water splitting
开发结构控制的多孔金属氧化物纳米结构光电阳极,用于高效太阳能驱动的水分解
- 批准号:
24K08579 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Development of Surface Modification Process for Semitransparent Photoelectrodes toward Durable Tandem Water Splitting Cell
半透明光电极表面改性工艺的发展以实现耐用的串联水分解电池
- 批准号:
23K04917 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of water splitting photoelectrochemical cell using liquid phase-flux controlled sputtering method
液相通量控制溅射法水分解光电化学电池的研制
- 批准号:
23H01907 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Constraining ocean-mantle dynamics by improving shear-wave splitting with ocean bottom seismometers
通过海底地震仪改进剪切波分裂来约束洋幔动力学
- 批准号:
2303839 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Water splitting system based on visible light responsive photocatalysts and carbon-based conductors
基于可见光响应光催化剂和碳基导体的水分解系统
- 批准号:
22KF0160 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Modelling of photochemical water splitting based on charge accumulation in macrocycles
基于大环电荷积累的光化学分解水建模
- 批准号:
2889683 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Studentship
Water-splitting for renewable hydrogen energy sources: a molecular level approach
可再生氢能源的水分解:分子水平方法
- 批准号:
2888859 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Studentship
Solar-Driven Water Splitting for the Simultaneous Production of Green Hydrogen and Value-added Chemicals - Hydrogen peroxide (SolHydroGen)
太阳能驱动水分解同时生产绿色氢气和增值化学品 - 过氧化氢 (SolHydroGen)
- 批准号:
EP/X033368/1 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Fellowship














{{item.name}}会员




