Recent Advances in Algebraic Geometry
代数几何的最新进展
基本信息
- 批准号:1262798
- 负责人:
- 金额:$ 4.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-03-01 至 2015-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The conference "Recent Advances in Algebraic Geometry" will be held May 16--19, 2013 at the University of Michigan, Ann Arbor. The motivation behind the conference is the extraordinary progress made in the past decade in our understanding of the geometry of higher dimensional algebraic varieties, as well as in areas such as Hodge theory, enumerative geometry, or syzygies. It will bring together leading experts in Algebraic Geometry, to inform the audience of the major developments of the past few years, to propose new research directions, and to establish connections between different subfields. The following themes will be represented at the conference: the Minimal Model Program and its applications, vanishing theorems and multiplier ideals, derived categories and applications, Hodge theory and complex geometry, moduli spaces and enumerative geometry, commutative and computational algebra. More details about the conference, as well as the list of confirmed speakers, are available at the conference website, at http://homepages.math.uic.edu/~mpopa/robfest/The conference will focus on some of the outstanding recent developments in Algebraic Geometry. The speakers have been chosen on the basis of their research contributions to the field, but also for their expository skills and dedication to the development of younger generations of researchers and teachers in mathematics. Some have produced many of the most important textbooks and advanced monographs in Algebraic Geometry in the last decades, have introduced many of today's algebraic geometers to active research topics, and have been a major force in developing the field as a whole. We therefore expect the conference to be well-attended by young researchers wishing to learn about, and then share with members of their groups, current questions in a wide spectrum of topics. The talks will contain a substantial expository and didactic component for this younger audience, for whom it is sometimes difficult to keep up to date with the rapid developments that the field is seeing.
“代数几何的最新进展”会议将于2013年5月16日至19日在密歇根大学安阿伯举行。 会议背后的动机是在过去的十年中取得了非凡的进展,在我们的理解几何的高维代数品种,以及在该地区,如霍奇理论,枚举几何,或syzygies。 它将汇集代数几何领域的顶尖专家,向观众介绍过去几年的主要发展,提出新的研究方向,并建立不同子领域之间的联系。 以下主题将代表在会议上:最小模型程序及其应用,消失定理和乘数理想,派生类别和应用,霍奇理论和复杂的几何,模空间和枚举几何,交换和计算代数。 关于会议的更多细节,以及确认的发言者名单,可在会议网站上查阅,在http://homepages.math.uic.edu/~mpopa/robfest/The会议将集中在代数几何的一些杰出的最新发展。 演讲者的选择是基于他们对该领域的研究贡献,也是因为他们的技能和对年轻一代数学研究人员和教师发展的奉献精神。 有些产生了许多最重要的教科书和先进的专着在代数几何在过去几十年中,介绍了许多今天的代数geometers积极的研究课题,并已成为一个主要力量在发展领域作为一个整体。 因此,我们希望希望年轻的研究人员能够踊跃参加会议,了解并与他们的小组成员分享广泛主题中的当前问题。这些讲座将为年轻观众提供大量的讲座和教学内容,对他们来说,有时很难跟上该领域的快速发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mircea Mustata其他文献
An irrational variant of the congruent number problem
全等数问题的无理变体
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata;Yusuke Nakamura;Jerome Dimabayao - 通讯作者:
Jerome Dimabayao
The moduli spaces of stable parabolic λ-connections and their canonical coordinates (Joint works with M. Inaba and with S. Szabo)
稳定抛物线 λ 连接的模空间及其规范坐标(与 M. Inaba 和 S. Szabo 联合工作)
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata;Ken-ichi Yoshida;Masa-Hiko Saito - 通讯作者:
Masa-Hiko Saito
A boundedness conjecture for minimal log discrepancies on a fixed germ
固定细菌上最小对数差异的有界猜想
- DOI:
10.1090/conm/712/14351 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata;Yusuke Nakamura - 通讯作者:
Yusuke Nakamura
The ring of modular forms of O(2,4;Z) with characters
带字符的 O(2,4;Z) 模形式环
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata;Yusuke Nakamura;Jerome Dimabayao;Atsuhira Nagano and Kazushi Ueda - 通讯作者:
Atsuhira Nagano and Kazushi Ueda
Mircea Mustata的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mircea Mustata', 18)}}的其他基金
Conference: Singularities in Ann Arbor
会议:安娜堡的奇点
- 批准号:
2401041 - 财政年份:2024
- 资助金额:
$ 4.97万 - 项目类别:
Standard Grant
D-modules and invariants of singularities
D 模和奇点不变量
- 批准号:
2301463 - 财政年份:2023
- 资助金额:
$ 4.97万 - 项目类别:
Standard Grant
Hodge Filtration on Local Cohomology and Minimal Exponents
局部上同调和最小指数的 Hodge 过滤
- 批准号:
2001132 - 财政年份:2020
- 资助金额:
$ 4.97万 - 项目类别:
Continuing Grant
Hodge-Theoretic Generalizations of Multiplier Ideals
乘数理想的霍奇理论推广
- 批准号:
1701622 - 财政年份:2017
- 资助金额:
$ 4.97万 - 项目类别:
Continuing Grant
Questions on Singularities and Adjoint Linear Systems
关于奇点和伴随线性系统的问题
- 批准号:
1401227 - 财政年份:2014
- 资助金额:
$ 4.97万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
- 批准号:
1265256 - 财政年份:2013
- 资助金额:
$ 4.97万 - 项目类别:
Continuing Grant
Invariants of Singularities in Zero and Positive Characteristic
零特征和正特征中奇点的不变量
- 批准号:
1068190 - 财政年份:2011
- 资助金额:
$ 4.97万 - 项目类别:
Continuing Grant
Frobenius Splitting in Algebraic Geometry, Commutative Algebra, and Representation Theory
代数几何、交换代数和表示论中的弗罗贝尼乌斯分裂
- 批准号:
0968646 - 财政年份:2010
- 资助金额:
$ 4.97万 - 项目类别:
Standard Grant
相似海外基金
Conference: IHES 2023 Summer School: Recent advances in algebraic K-theory
会议:IHES 2023 暑期学校:代数 K 理论的最新进展
- 批准号:
2304723 - 财政年份:2023
- 资助金额:
$ 4.97万 - 项目类别:
Standard Grant
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
- 批准号:
RGPIN-2017-06330 - 财政年份:2022
- 资助金额:
$ 4.97万 - 项目类别:
Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
- 批准号:
RGPIN-2017-06330 - 财政年份:2021
- 资助金额:
$ 4.97万 - 项目类别:
Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
- 批准号:
RGPIN-2017-06330 - 财政年份:2020
- 资助金额:
$ 4.97万 - 项目类别:
Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
- 批准号:
RGPIN-2017-06330 - 财政年份:2019
- 资助金额:
$ 4.97万 - 项目类别:
Discovery Grants Program - Individual
Advances in Moduli Spaces and Algebraic Stacks
模空间和代数栈的进展
- 批准号:
1801976 - 财政年份:2018
- 资助金额:
$ 4.97万 - 项目类别:
Standard Grant
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
- 批准号:
RGPIN-2017-06330 - 财政年份:2018
- 资助金额:
$ 4.97万 - 项目类别:
Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
- 批准号:
RGPIN-2017-06330 - 财政年份:2017
- 资助金额:
$ 4.97万 - 项目类别:
Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and various algebraic structures
应用计算机代数的进展来研究经典可积系统和各种代数结构
- 批准号:
249783-2012 - 财政年份:2016
- 资助金额:
$ 4.97万 - 项目类别:
Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and various algebraic structures
应用计算机代数的进展来研究经典可积系统和各种代数结构
- 批准号:
249783-2012 - 财政年份:2015
- 资助金额:
$ 4.97万 - 项目类别:
Discovery Grants Program - Individual