Hodge Filtration on Local Cohomology and Minimal Exponents
局部上同调和最小指数的 Hodge 过滤
基本信息
- 批准号:2001132
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Given a polynomial in several variables, with complex coefficients, its solution set is a geometric object that in many interesting situations exhibits singularities. These singularities can be measured by invariants that can be either numerical or more involved (for example, they can form in turn suitable subsets in the polynomial ring). Over the past few years, the PI has been involved in the study of certain such invariants by making use of tools from from Hodge theory and the algebraic theory of differential operators. In the present project, the PI plans to extend this study in several directions. For example, he plans to generalize his previous work with Popa from the case of singularities of geometric objects defined by one equation to more general such singularities. In a different direction, he intends to investigate one interesting numerical invariant of singularities--the minimal exponent--and its connections with other invariants and points of view on singularities. The PI will train graduate students in the area of research.The PI has been studying with Popa certain invariants of singularities, the Hodge ideals, for hypersurfaces and, more generally, for Q-divisors. These ideals can be defined naturally in the context of Saito's theory of mixed Hodge modules. It turns out that the triviality of the Hodge ideals is governed by a numerical invariant,the minimal exponent, which is closely related to an important invariant in birational geometry, the log canonical threshold. While the minimal exponent has been studied a lot for isolated singularities, methods related to Hodge ideals allow treating the general case. There are two main components of the present project. In one direction, the PI intends to further investigate, with Popa, an extension of the theory of Hodge ideals beyond the case of hypersurfaces, by making use of the canonical filtration on local cohomology. There are several interesting questions in this context, concerning connections with the multi-variable version of the V-filtration and with the Bernstein-Sato polynomial for ideals. In a different direction, the PI plans to study general properties of the minimal exponent and its relations to other points of view on singularities (via divisorial valuations and resolution of singularities, or in connection to the motivic zeta function).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
给定一个多元复系数多项式,它的解集是一个几何对象,在许多有趣的情况下表现出奇异性。这些奇异性可以通过不变量来测量,这些不变量可以是数值的,也可以是更复杂的(例如,它们可以在多项式环中形成合适的子集)。在过去的几年里,PI一直参与研究某些这样的不变量,利用工具从霍奇理论和微分算子的代数理论。在本项目中,PI计划在几个方向上扩展这项研究。例如,他计划将他以前与波帕的工作从由一个方程定义的几何对象的奇点的情况推广到更一般的奇点。在一个不同的方向,他打算调查一个有趣的数值不变量的奇异性-最小指数-及其与其他不变量和观点的连接奇异性。PI将培养研究生的研究领域。PI一直在研究与波帕某些不变量的奇异性,霍奇理想,超曲面,更一般地说,为Q-因子。这些理想可以在Saito的混合Hodge模理论的背景下自然地定义。事实证明,平凡的霍奇理想是由一个数值不变量,最小指数,这是密切相关的一个重要的不变量在双有理几何,对数正则阈值。虽然孤立奇点的最小指数已经被研究了很多,但与霍奇理想相关的方法允许处理一般情况。本项目有两个主要组成部分。在一个方向上,PI打算进一步研究,与波帕,霍奇理想的理论超越超曲面的情况下,通过利用局部上同调的典型过滤的延伸。在这方面有几个有趣的问题,关于与多变量版本的V-过滤和伯恩斯坦-佐藤多项式的理想。在另一个方向,PI计划研究最小指数的一般属性及其与其他奇点观点的关系(通过除法估值和奇点解析,或与动机zeta函数相关)。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hodge filtration on local cohomology, Du Bois complex and local cohomological dimension
- DOI:10.1017/fmp.2022.15
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:M. Mustaţă;M. Popa
- 通讯作者:M. Mustaţă;M. Popa
The Du Bois complex of a hypersurface and the minimal exponent
- DOI:10.1215/00127094-2022-0074
- 发表时间:2021-05
- 期刊:
- 影响因子:2.5
- 作者:M. Mustaţă;S. Olano;M. Popa;J. Witaszek
- 通讯作者:M. Mustaţă;S. Olano;M. Popa;J. Witaszek
On a conjecture of Bitoun and Schedler
论Bitoun和Schedler的猜想
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:1
- 作者:Mustata, Mircea;Olano, Sebastian
- 通讯作者:Olano, Sebastian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mircea Mustata其他文献
An irrational variant of the congruent number problem
全等数问题的无理变体
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata;Yusuke Nakamura;Jerome Dimabayao - 通讯作者:
Jerome Dimabayao
The moduli spaces of stable parabolic λ-connections and their canonical coordinates (Joint works with M. Inaba and with S. Szabo)
稳定抛物线 λ 连接的模空间及其规范坐标(与 M. Inaba 和 S. Szabo 联合工作)
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata;Ken-ichi Yoshida;Masa-Hiko Saito - 通讯作者:
Masa-Hiko Saito
A boundedness conjecture for minimal log discrepancies on a fixed germ
固定细菌上最小对数差异的有界猜想
- DOI:
10.1090/conm/712/14351 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata;Yusuke Nakamura - 通讯作者:
Yusuke Nakamura
The ring of modular forms of O(2,4;Z) with characters
带字符的 O(2,4;Z) 模形式环
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata;Yusuke Nakamura;Jerome Dimabayao;Atsuhira Nagano and Kazushi Ueda - 通讯作者:
Atsuhira Nagano and Kazushi Ueda
Mircea Mustata的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mircea Mustata', 18)}}的其他基金
D-modules and invariants of singularities
D 模和奇点不变量
- 批准号:
2301463 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Hodge-Theoretic Generalizations of Multiplier Ideals
乘数理想的霍奇理论推广
- 批准号:
1701622 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Questions on Singularities and Adjoint Linear Systems
关于奇点和伴随线性系统的问题
- 批准号:
1401227 - 财政年份:2014
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
- 批准号:
1265256 - 财政年份:2013
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Invariants of Singularities in Zero and Positive Characteristic
零特征和正特征中奇点的不变量
- 批准号:
1068190 - 财政年份:2011
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Frobenius Splitting in Algebraic Geometry, Commutative Algebra, and Representation Theory
代数几何、交换代数和表示论中的弗罗贝尼乌斯分裂
- 批准号:
0968646 - 财政年份:2010
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似海外基金
I-Corps: Translation Potential of Cellulose-Nanofiber-Based Surface Agents for Enhancing Bioactive Filtration Efficiency
I-Corps:纤维素纳米纤维基表面剂在提高生物活性过滤效率方面的转化潜力
- 批准号:
2401619 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Unlocking the potential for winemaking applications of membrane filtration
释放膜过滤酿酒应用的潜力
- 批准号:
IM240100133 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Mid-Career Industry Fellowships
Acoustically activated trapping for colloidal filtration: a multiscale experimental investigation using laser-based optical diagnostics
用于胶体过滤的声激活捕获:使用基于激光的光学诊断的多尺度实验研究
- 批准号:
2236466 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Single glomerular filtration rate and kidney prognosis using unenhanced CT and histopathology in human
使用平扫 CT 和组织病理学研究人类单肾小球滤过率和肾脏预后
- 批准号:
23K15237 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Role of myosin 1e in podocyte biology and renal filtration
肌球蛋白 1e 在足细胞生物学和肾滤过中的作用
- 批准号:
10587345 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
A Unified Experimental and Modelling Approach to Determine the Infectious Viral Bio-Aerosol Filtration Efficacy of Face Coverings.
确定面罩的传染性病毒生物气溶胶过滤功效的统一实验和建模方法。
- 批准号:
10074419 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Collaborative R&D
Determination of filtration level and porosity in Additive Manufactured porous filters
增材制造多孔过滤器过滤水平和孔隙率的测定
- 批准号:
10060396 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Collaborative R&D
High-efficient and eco-friendly technology for the elimination of permanent organic pollutants in filtration systems
消除过滤系统中永久性有机污染物的高效环保技术
- 批准号:
10072336 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant for R&D
Mapping single nephron glomerular filtration rate with mechanisms of autoregulation in the kidney using magnetic resonance imaging
使用磁共振成像绘制单肾单位肾小球滤过率与肾脏自动调节机制
- 批准号:
10732632 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Next generation additive manufacturing solution enabling local, sustainable and low cost production of energy efficient ceramic filtration membranes
下一代增材制造解决方案可实现本地、可持续和低成本生产节能陶瓷过滤膜
- 批准号:
10056737 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Launchpad