A view towards algebraic geometry
对代数几何的看法
基本信息
- 批准号:1702114
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-01 至 2018-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports participation in a conference entitled "A View Toward Algebraic Geometry" which will be held May 1-5, 2017, at the Harbor View Hotel, on Martha's Vineyard. This meeting brings together leading experts in commutative algebra and algebraic geometry to inform the audience of the major developments from the past few years, to advance new research problems and directions, and to establish innovative connections between different subfields. While all of the speakers were chosen for their role in the recent developments, many were also chosen for their communication skills, and their dedication to developing young researchers in mathematics. The organizers expect that all talks will have an important didactic component, aimed at the junior researchers in the audience. The award will be used to support the participation of 40 junior mathematicians (defined as graduate students, postdocs, and researchers within 5 years of their PhD).The expertise of the speakers covers a broad, but interrelated, range of topics. Nevertheless, explicit algebraic methods and applications of algebraic geometry form a coherent underlying theme. Major themes of the conference include the recent progress on syzygies in algebraic geometry and commutative algebra; rationality and stable rationality of algebraic varieties; and asymptotic stability. These three distinct topics are not disjoint, with many of the speakers and participants working in more than one area. In general, an effort has been made to bring together participants from related, but different, fields, in order to encourage the cross-fertilization of ideas and techniques. Further information is available at the conference's website: https://sites.google.com/site/aviewtowardag/home.
该奖项支持参加将于2017年5月1日至5日在Martha's Vineyard的Harbor View Hotel举行的题为“A View Toward Algecompline Geometry”的会议。 这次会议汇集了交换代数和代数几何的领先专家,向观众介绍过去几年的主要发展,推进新的研究问题和方向,并在不同的子领域之间建立创新联系。 虽然所有的发言者都被选为他们在最近的发展中的作用,许多人也被选为他们的沟通技巧,以及他们的奉献精神,以发展青年研究人员在数学。 组织者希望所有的演讲都有一个重要的教学部分,针对听众中的初级研究人员。该奖项将用于支持40名初级数学家(定义为研究生,博士后和博士学位后5年内的研究人员)的参与。演讲者的专业知识涵盖广泛但相互关联的主题范围。 然而,明确的代数方法和代数几何的应用形成了一个连贯的基本主题。 会议的主要议题包括代数几何及交换代数中合点的最新进展、代数簇的合理性及稳定合理性、以及渐近稳定性。 这三个不同的主题并不是互不相关的,许多发言者和与会者在一个以上的领域工作。 总的来说,已作出努力,将来自相关但不同领域的参与者聚集在一起,以鼓励思想和技术的相互交流。更多信息可在会议网站上查阅:https://sites.google.com/site/aviewtowardag/home。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mircea Mustata其他文献
An irrational variant of the congruent number problem
全等数问题的无理变体
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata;Yusuke Nakamura;Jerome Dimabayao - 通讯作者:
Jerome Dimabayao
The moduli spaces of stable parabolic λ-connections and their canonical coordinates (Joint works with M. Inaba and with S. Szabo)
稳定抛物线 λ 连接的模空间及其规范坐标(与 M. Inaba 和 S. Szabo 联合工作)
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata;Ken-ichi Yoshida;Masa-Hiko Saito - 通讯作者:
Masa-Hiko Saito
A boundedness conjecture for minimal log discrepancies on a fixed germ
固定细菌上最小对数差异的有界猜想
- DOI:
10.1090/conm/712/14351 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata;Yusuke Nakamura - 通讯作者:
Yusuke Nakamura
The ring of modular forms of O(2,4;Z) with characters
带字符的 O(2,4;Z) 模形式环
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata;Yusuke Nakamura;Jerome Dimabayao;Atsuhira Nagano and Kazushi Ueda - 通讯作者:
Atsuhira Nagano and Kazushi Ueda
Mircea Mustata的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mircea Mustata', 18)}}的其他基金
D-modules and invariants of singularities
D 模和奇点不变量
- 批准号:
2301463 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Hodge Filtration on Local Cohomology and Minimal Exponents
局部上同调和最小指数的 Hodge 过滤
- 批准号:
2001132 - 财政年份:2020
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Hodge-Theoretic Generalizations of Multiplier Ideals
乘数理想的霍奇理论推广
- 批准号:
1701622 - 财政年份:2017
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Questions on Singularities and Adjoint Linear Systems
关于奇点和伴随线性系统的问题
- 批准号:
1401227 - 财政年份:2014
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
- 批准号:
1265256 - 财政年份:2013
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Invariants of Singularities in Zero and Positive Characteristic
零特征和正特征中奇点的不变量
- 批准号:
1068190 - 财政年份:2011
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Frobenius Splitting in Algebraic Geometry, Commutative Algebra, and Representation Theory
代数几何、交换代数和表示论中的弗罗贝尼乌斯分裂
- 批准号:
0968646 - 财政年份:2010
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
- 批准号:
2338512 - 财政年份:2024
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
- 批准号:
2338683 - 财政年份:2024
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: STEMEdIPRF: Towards a Diverse Professoriate: Experiences that Inform Underrepresented Scholars' Perceptions of Value Alignment and Career Decisions
博士后奖学金:STEMEdIPRF:走向多元化的教授职称:为代表性不足的学者对价值调整和职业决策的看法提供信息的经验
- 批准号:
2327411 - 财政年份:2024
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
- 批准号:
2349935 - 财政年份:2024
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
- 批准号:
2349934 - 财政年份:2024
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Excellence in Research:Towards Data and Machine Learning Fairness in Smart Mobility
卓越研究:实现智能移动中的数据和机器学习公平
- 批准号:
2401655 - 财政年份:2024
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
- 批准号:
2328281 - 财政年份:2024
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
CAREER: Towards a comprehensive model of seismicity throughout the seismic cycle
职业:建立整个地震周期地震活动的综合模型
- 批准号:
2339556 - 财政年份:2024
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
- 批准号:
2340171 - 财政年份:2024
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant