RUI: Aspects Of Non-Local Dynamics In String Theory
RUI:弦理论中非局域动力学的各个方面
基本信息
- 批准号:0968726
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-local dynamics is an emerging interest in physics across many disciplines, from condensed matter physics to particle physics to quantum gravity. This project explores the effects of non-local dynamics as realized in the context of a certain class of string theory models of particular interest to cosmology. The string theory embedding of these models assures that the exotic frameworks encountered are physically and logically self-consistent. Yet, such non-local systems remain poorly understood, with many counter-intuitive features and apparent paradoxes. This project aims to unravel general features of non-local dynamics as they arise in this class of string theory models, and apply these results to modeling the primordial plasma of the universe. The project also involves undergraduate education as an integral part. This is achieved through a two-pronged approach: (1) through the direct participation of undergraduate students in the research within a program that has already proven to be highly successful in involving undergraduate seniors in string theory research; and (2) through the development of a senior-level undergraduate course and textbook to help prepare students for competitive graduate programs in theoretical physics. The project also includes a multi-pronged community outreach component involving a web-based instructional resource, and a public lecture series on current topics at the frontier of theoretical physics.
非定域动力学是物理学中许多学科的新兴兴趣,从凝聚态物理学到粒子物理学再到量子引力。这个项目探讨了在宇宙学特别感兴趣的某一类弦理论模型的背景下实现的非局部动力学的影响。这些模型的弦理论嵌入确保了所遇到的奇异框架在物理和逻辑上是自洽的。然而,这种非局部系统仍然知之甚少,有许多违反直觉的特征和明显的悖论。这个项目的目的是解开非局部动力学的一般特征,因为它们出现在这类弦理论模型,并应用这些结果来模拟宇宙的原始等离子体。该项目还将本科教育作为一个组成部分。这是通过双管齐下的方法实现的:(1)通过本科生直接参与一个已经被证明在让本科生参与弦理论研究方面非常成功的计划中的研究;(2)通过开发高级本科课程和教科书,帮助学生为理论物理学的竞争性研究生课程做好准备。该项目还包括一个多管齐下的社区外展组成部分,涉及基于网络的教学资源,以及关于理论物理前沿当前主题的公开讲座系列。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vatche Sahakian其他文献
Vatche Sahakian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vatche Sahakian', 18)}}的其他基金
RUI: Weaving Space with Quantum Entanglement, and Black Holes in Stochastic Matrix Theory
RUI:用量子纠缠编织空间,以及随机矩阵理论中的黑洞
- 批准号:
2109420 - 财政年份:2021
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
RUI: Emergent Spacetime in Matrix Theory
RUI:矩阵理论中的涌现时空
- 批准号:
1719686 - 财政年份:2017
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
RUI: Quantum Information in Matrix Black Holes and Black Hole Horizons in String Theory
RUI:弦理论中矩阵黑洞和黑洞视界中的量子信息
- 批准号:
1415101 - 财政年份:2014
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
相似国自然基金
基于构件软件的面向可靠安全Aspects建模和一体化开发方法研究
- 批准号:60503032
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
- 批准号:
EP/Y030249/1 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Research Grant
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
- 批准号:
2882187 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Studentship
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Geometric aspects of the free-fermion and the non-commutative Schur functions
自由费米子和非交换 Schur 函数的几何方面
- 批准号:
23K03056 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Domain Walls, Confinement, and Other Non-Perturbative Aspects of Yang-Mills Theory
域壁、限制和杨米尔斯理论的其他非微扰方面
- 批准号:
559071-2021 - 财政年份:2022
- 资助金额:
$ 6万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Large-N analysis of irrelevant deformations of quantum field theory and their non-perturbative aspects
量子场论的不相关变形及其非微扰方面的大 N 分析
- 批准号:
21J14825 - 财政年份:2021
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Domain Walls, Confinement, and Other Non-Perturbative Aspects of Yang-Mills Theory
域壁、限制和杨米尔斯理论的其他非微扰方面
- 批准号:
559071-2021 - 财政年份:2021
- 资助金额:
$ 6万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Quantum graph aspects for graphene and carbon nanotube in non-uniform fields
非均匀场中石墨烯和碳纳米管的量子图方面
- 批准号:
21K03273 - 财政年份:2021
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-perturbative aspects of quantum field theories from integrability
量子场论的可积性的非微扰方面
- 批准号:
20J10126 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Establishing key aspects of non-drilling carious treatments based on quantum and X-ray beam technologies
基于量子和 X 射线束技术确定非钻孔龋齿治疗的关键方面
- 批准号:
20H00552 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Scientific Research (A)