Iwasawa Theory

岩泽理论

基本信息

  • 批准号:
    0968772
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

Professor Greenberg intends to study a diverse set of problems related toSelmer groups, elliptic curves, and Iwasawa theory. Selmer groups have traditionally been an important tool for studying the Mordell-Weil group of an elliptic curve over a number field. They have also played an important role in proving special cases of the Birch and Swinnerton-Dyer conjecture which provides a relationship between arithmetic properties of an elliptic curve E and the behavior of the Hasse-Weil L-function for E. In recent years, it has become clear that certain natural generalizations of the Selmer group should provide similar conjectural relationships to the behavior of much more general kinds of L-functions. Iwasawa theory provides a framework for studying these conjectures. In its essence, the idea is to study Selmer groups associated to a family of representations of the absolute Galois group of a number field. The formulation of these conjectures in a general setting leads to some fundamental problems. One problem is to find a simple way to measure how large the Selmer groups are. Their size should be measured by an element in a certain ring. But it is difficult to find a way to define that element. One of the objectives of this project is to tackle that question in two contrasting settings. In one setting, the ring is rather easy to describe, but is non-commutative. In the other setting, the ring is commutative, but we know very little about its actually structure. Another objective of this project is to better understand the behavior of certain quantities which indirectly reflect the structure of Selmer groups, especially in the non-commutative setting. These quantities are certain ``multiplicities.'' There are typically an infinite number of these quantities. Professor Greenberg hopes to show how to determine all of these quantities from just a finite number of them. One of the fundamental questions in the theory of numbers is the studyof solutions of an algebraic equation. The difficulty of this questiondepends on the degree of the equation and the number of variables. Ithas been understood since antiquity how to study this question when thedegree is one or two and the number of variables is also one or two.However, the question becomes much more subtle when one considersequations of degree three, even if the number of variables is just two.A fundamental conjecture concerning this question was formulated in the1960s by Birch and Swinnerton-Dyer. Although considerable progress hasbeen made since then, the conjecture remains unresolved. Such equationsdefine a class of curves known as "elliptic curves." The study of theirproperties has proved to be of importance in cryptography - designing codesfor the secure transmission of information. Professor Greenberg intends tocontinue his study of "Selmer groups" which have been a traditional tool inunderstanding the arithmetic properties of elliptic curves and in studyingthe conjecture of Birch and Swinnerton-Dyer. The ultimate goal is toachieve a deeper understanding of the solutions to the algebraic equationsthat define an elliptic curve, and to develop a more general point of viewconcerning conjectures analogous to the Birch and Swinnerton-Dyer conjecture.
格林伯格教授打算研究一系列与塞尔默群、椭圆曲线和岩泽理论有关的问题。塞尔默群一直是研究数域上椭圆曲线的Mordell-Weil群的重要工具。 他们还在证明Birch和Swinnerton-Dyer猜想的特殊情况中发挥了重要作用,该猜想提供了椭圆曲线E的算术性质与E的Hasse-Weil L-函数的行为之间的关系。 近年来,人们已经清楚地认识到,塞尔默群的某些自然推广应该为更一般的L-函数的行为提供类似的拓扑关系。岩泽理论提供了一个框架,研究这些问题。在其本质上,这个想法是研究塞尔默群相关的一个家庭的代表性的绝对伽罗瓦群的数域。在一般情况下,这些公式的制定导致了一些基本问题。一个问题是找到一种简单的方法来测量塞尔默群有多大。 它们的大小应该由某个环中的元素来测量。但是很难找到一种方法来定义这个元素。该项目的目标之一是在两种截然不同的环境中解决这一问题。在一种情况下,环很容易描述,但它是非交换的。在另一种情况下,环是交换的,但我们对它的实际结构知之甚少。 这个项目的另一个目标是更好地理解某些间接反映塞尔默群结构的量的行为,特别是在非交换的情况下。这些量是某些“多重性”。通常有无数个这样的量。格林伯格教授希望展示如何从有限数量的量中确定所有这些量。 数论的基本问题之一是研究代数方程的解。这个问题的难度取决于方程的阶数和变量的数量。从古代起,人们就知道当次数为1或2,变量数也为1或2时,如何研究这个问题。然而,当我们求解3次方程时,即使变量数只有2,这个问题就变得微妙得多了。尽管从那时起已经取得了相当大的进展,但这个猜想仍然没有得到解决。这样的方程定义了一类称为“椭圆曲线”的曲线。“研究它们的性质已被证明是重要的密码学-设计代码的安全传输信息。格林伯格教授打算继续他的研究“塞尔默群”,这一直是一个传统的工具,在理解算术性质的椭圆曲线和研究的猜想,伯奇和Swinnerton-Dyer。最终的目标是要实现更深入的理解的解决方案的代数方程,定义一个椭圆曲线,并制定一个更普遍的观点有关类似于Birch和Swinnerton-Dyer猜想的猜想。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ralph Greenberg其他文献

The structure of Selmer groups.
Selmer 群的结构。
On 2-adicL-functions and cyclotomic invariants
  • DOI:
    10.1007/bf01174566
  • 发表时间:
    1978-02-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Ralph Greenberg
  • 通讯作者:
    Ralph Greenberg

Ralph Greenberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ralph Greenberg', 18)}}的其他基金

FRG: Collaborative Research: Chern Classes in Iwasawa Theory
FRG:合作研究:岩泽理论中的陈省身课程
  • 批准号:
    1360902
  • 财政年份:
    2014
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Selmer Groups
塞尔默集团
  • 批准号:
    0200785
  • 财政年份:
    2002
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Iwasawa Theory
岩泽理论
  • 批准号:
    9800820
  • 财政年份:
    1998
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Selmer Groups and Iwasawa Theory
数学科学:塞尔默群和岩泽理论
  • 批准号:
    9501015
  • 财政年份:
    1995
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Iwasawa Theory
数学科学:岩泽理论
  • 批准号:
    9203225
  • 财政年份:
    1992
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Iwasawa Theory for p-adic representations
数学科学:p-adic 表示的 Iwasawa 理论
  • 批准号:
    8902190
  • 财政年份:
    1989
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Iwasawa Theory and p-adic L-Functions
数学科学:岩泽理论和 p-adic L 函数
  • 批准号:
    8601120
  • 财政年份:
    1986
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Power Series in Algebraic Number Theory and the Theory of Elliptic Curves
数学科学:代数数论中的幂级数和椭圆曲线理论
  • 批准号:
    8301050
  • 财政年份:
    1983
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Some Questions in Algebraic Number Theory
代数数论中的一些问题
  • 批准号:
    7903313
  • 财政年份:
    1979
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Number Theory
数论
  • 批准号:
    7702827
  • 财政年份:
    1977
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Euler Systems, Iwasawa Theory, and the Arithmetic of Elliptic Curves
欧拉系统、岩泽理论和椭圆曲线算术
  • 批准号:
    2401321
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Iwasawa theory of class group schemes in characteristic p
特征p中的类群方案岩泽理论
  • 批准号:
    2302072
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Iwasawa theory of elliptic curves and the Birch--Swinnerton-Dyer conjecture
岩泽椭圆曲线理论和 Birch--Swinnerton-Dyer 猜想
  • 批准号:
    2302064
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Iwasawa Theory and p-adic Hodge Theory
岩泽理论和 p-adic Hodge 理论
  • 批准号:
    RGPIN-2019-03987
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Grants Program - Individual
Iwasawa Theory, Euler Systems and Arithmetic Applications
岩泽理论、欧拉系统和算术应用
  • 批准号:
    RGPIN-2020-04259
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Grants Program - Individual
Iwasawa Theory, Euler Systems and Arithmetic Applications
岩泽理论、欧拉系统和算术应用
  • 批准号:
    RGPAS-2020-00096
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
New developments in the anticyclotomic Iwasawa theory and special value formulas on L-functions
反圆剖分Iwasawa理论和L函数特殊值公式的新进展
  • 批准号:
    22H00096
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Iwasawa Theory, Euler Systems and Arithmetic Applications
岩泽理论、欧拉系统和算术应用
  • 批准号:
    RGPAS-2020-00096
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Iwasawa Theory and p-adic Hodge Theory
岩泽理论和p进霍奇理论
  • 批准号:
    RGPIN-2019-03987
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Grants Program - Individual
Iwasawa theory for non cyclotomic Zp-extension centered on Greenberg's generalized conjecture
以格林伯格广义猜想为中心的非分圆 Zp 扩展岩泽理论
  • 批准号:
    21K13778
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了