Analytical and geometrical problems in calculus of variations and partial differential equations

变分法和偏微分方程中的分析和几何问题

基本信息

  • 批准号:
    0969962
  • 负责人:
  • 金额:
    $ 16.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-01 至 2013-05-31
  • 项目状态:
    已结题

项目摘要

The research of the principal investigator will be focused on different mathematical areas. First of all, he plans to work on optimal transport theory. This problem, which consists in finding the cheapest way to transport a distribution of mass from one place to another, has recently found many applications in meteorology, biology and populations dynamics, or for instance to study the antenna design problem. The investigator has already worked on this subject for several years. He also intends to study Euler equations for incompressible fluids and to work on problems of semiclassical limit coming from quantum physics. Finally, he wishes to apply some of his recent results on some "improved" version of the classical isoperimetric inequalities to study the stability of the shapes of crystals under the action of an external potential.The research described above has applications in many different areas: the optimal transport problem has obvious application to economics, but it has also shown to be very interdisciplinary, with links with other areas of mathematics like geometry, probability and partial differential equations, and also with physics and biology. Euler equations and semiclassical limits are classical problem in physics and quantum physics, and their mathematical study may increase deeper understanding of the physical phenomena themselves. Finally, the study of the rigidity of crystals under exterior potential should help to explain many phenomena which are currently observed in experiments but not yet completely understood.
首席研究员的研究将集中在不同的数学领域。首先,他计划研究最佳运输理论。这个问题,其中包括寻找最便宜的方式运输的质量分布从一个地方到另一个地方,最近发现了许多应用在气象学,生物学和人口动力学,或例如研究天线设计问题。研究人员已经研究这个问题好几年了。他还打算研究欧拉方程的不可压缩流体和工作的问题,半经典极限来自量子物理。最后,他希望应用他最近的一些结果对一些“改进”版本的经典等周不等式,以研究稳定性的形状下的行动,一个外部potential.The研究上述应用在许多不同的领域:最优运输问题在经济学中有明显的应用,但它也显示出非常跨学科的性质,与其他数学领域的联系,如几何,概率和偏微分方程,也与物理学和生物学。欧拉方程和半经典极限是物理学和量子物理学中的经典问题,对它们的数学研究可以加深对物理现象本身的理解。最后,研究晶体在外力作用下的刚性,有助于解释许多目前在实验中观察到但尚未完全理解的现象。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alessio Figalli其他文献

A general class of free boundary problems for fully nonlinear parabolic equations
  • DOI:
    10.1007/s10231-014-0413-7
  • 发表时间:
    2014-03-12
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Alessio Figalli;Henrik Shahgholian
  • 通讯作者:
    Henrik Shahgholian
Constraint Maps with Free Boundaries: the Obstacle Case
  • DOI:
    10.1007/s00205-024-02032-5
  • 发表时间:
    2024-09-06
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Alessio Figalli;Sunghan Kim;Henrik Shahgholian
  • 通讯作者:
    Henrik Shahgholian
A note on the regularity of the free boundaries in the optimal partial transport problem
Quantitative stability of the Brunn-Minkowski inequality for sets of equal volume
A Two-Scale Complexity Measure for Deep Learning Models
深度学习模型的两尺度复杂性度量
  • DOI:
    10.48550/arxiv.2401.09184
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Massimiliano Datres;G. P. Leonardi;Alessio Figalli;David Sutter
  • 通讯作者:
    David Sutter

Alessio Figalli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alessio Figalli', 18)}}的其他基金

Workshop: Analysis in Lyon; October 26-30, 2015; Lyon, France
研讨会:里昂分析;
  • 批准号:
    1547136
  • 财政年份:
    2015
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Standard Grant

相似海外基金

Mechano-geometrical cell interface for generating hiPSC derived higher order gastruloid
用于生成 hiPSC 衍生的高阶原肠胚的机械几何细胞接口
  • 批准号:
    23K17205
  • 财政年份:
    2023
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Multi-core fiber sensing using geometrical phase nonlinearity of optical polarization
利用光学偏振的几何相位非线性进行多芯光纤传感
  • 批准号:
    23K04616
  • 财政年份:
    2023
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications of Geometrical Singular Perturbation Theory in Hyperplasticity Accelerated Ratcheting Models
几何奇异摄动理论在超塑性加速棘轮模型中的应用
  • 批准号:
    2888423
  • 财政年份:
    2023
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Studentship
Geometrical structures in mathematical physics
数学物理中的几何结构
  • 批准号:
    RGPIN-2018-05413
  • 财政年份:
    2022
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Understanding Kirkendall Pore Formation and Evolution: Correlating Compositional, Geometrical, and Thermal Influences
职业:了解柯肯德尔孔隙的形成和演化:关联成分、几何和热影响
  • 批准号:
    2143334
  • 财政年份:
    2022
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Continuing Grant
Metric and planning of reliable robotic manipulation, equivalently measuring both geometrical and mechanical constraints
可靠的机器人操作的度量和规划,相当于测量几何和机械约束
  • 批准号:
    22H01457
  • 财政年份:
    2022
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
An advanced multiphase model for geometrical evolution and anomalous flows
几何演化和反常流动的高级多相模型
  • 批准号:
    FT210100165
  • 财政年份:
    2022
  • 资助金额:
    $ 16.8万
  • 项目类别:
    ARC Future Fellowships
The geometrical framework of General Relativity and String Theory
广义相对论和弦理论的几何框架
  • 批准号:
    2758423
  • 财政年份:
    2022
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Studentship
Topological and geometrical aspects of condensed matter systems
凝聚态系统的拓扑和几何方面
  • 批准号:
    2856645
  • 财政年份:
    2022
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Studentship
Computational homogenization of soft composite plates and shells toward elucidating high-order geometrical pattern transformation
软复合材料板壳的计算均质化以阐明高阶几何图案变换
  • 批准号:
    22K14142
  • 财政年份:
    2022
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了