The geometry of Shimura varieties at primes of bad reduction
不良还原素数时志村簇的几何形状
基本信息
- 批准号:1001077
- 负责人:
- 金额:$ 15.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is in the field of arithmetic algebraic geometry, and is concerned with the study of moduli spaces of abelian varieties and p-divisible groups, and in particular with that of Shimura varieties and their local models. Questions about the geometry and cohomology of these arithmetic spaces arise naturally within the framework of the Langlands program. The proposed investigation focuses on two distinct but interralated problems. The first one is global and pursues the study of the Galois representations contributing to the cohomology of Shimura varieties focusing on ramified primes. T o do so, the PI proposes to extend the integral theory for Shimura varieties and their arithmetical compactifications to include primes of bad reduction, building on work of Kisin for Shimura varieties of Hodge type and on work of Chai, Faltings and Pink for arithmetical compactification of PEL type. The second problem is local and aims to identifying which reprensetations of a given p-adic group contribute to the cohomology of local models of Shimura varieties. In particular, the PI plans to purse new instances of a conjecture of Harris by a combination of local and global methods. Langlands' conjectures explore the interrelation between seemingly unrelated objects in two distinct fields: automorphic forms in harmonic analysis and Galois representations in number theory. An automorphic form is an analytic function of several complex variables, possessing many self-similarities. A Galois representation is a realizations of the symmetries existing among the solutions to a polynomial equation in one variable as matrices. Langlands' original idea was to pursue a connection between these two theories by the medium of some other functions, called L-functions. On one hand, the prospected correspondences are a way of organizing the analytic objects in terms of the number theoretic ones. On the other, their existence would provide answers to many open questions in number theory. This project is aimed to study those arithmetical spaces which are expected to encoded in their geometry instances of these correspondences.
这个项目是在算术代数几何领域,并关注于阿贝尔簇和p-可分群的模空间的研究,特别是与志村簇及其局部模型。 关于这些算术空间的几何和上同调的问题在朗兰兹纲领的框架内自然产生。 拟议的调查集中在两个不同的,但相互关联的问题。 第一个是全球和追求的伽罗瓦表示志村品种专注于分歧素的上同调的研究。为此,PI建议扩展Shimura簇及其算术紧化的积分理论,以包括不良还原的素数,建立在Kisin对Hodge型Shimura簇的工作和Chai,Faltings和Pink对PEL型算术紧化的工作之上。 第二个问题是局部的,目的是确定一个给定的p-adic群的reprensetations有助于上同调的局部模型的志村品种。 特别是,PI计划通过局部和全局方法的组合来寻找Harris猜想的新实例。朗兰兹的理论探索了两个不同领域中看似无关的对象之间的相互关系:调和分析中的自守形式和数论中的伽罗瓦表示。 自守形式是多个复变量的解析函数,具有许多自相似性。伽罗瓦表示是将一元多项式方程的解之间存在的对称性实现为矩阵。 朗兰兹最初的想法是通过一些其他的函数来寻求这两个理论之间的联系,这些函数被称为L-函数。一方面,预期对应是一种用数论方法组织分析对象的方法。另一方面,它们的存在将为数论中许多悬而未决的问题提供答案。 这个项目的目的是研究那些算术空间,这些算术空间被期望编码在这些对应的几何实例中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elena Mantovan其他文献
Variétés de Shimura, espaces de Rapoport-Zink et correspondances de Langlands locales
Shimura 的各种内容、Rapoport-Zink 的空间以及 Langlands 语言环境的对应关系
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Laurent Fargues;Elena Mantovan - 通讯作者:
Elena Mantovan
A compactification of Igusa varieties
- DOI:
10.1007/s00208-007-0149-4 - 发表时间:
2007-08-28 - 期刊:
- 影响因子:1.400
- 作者:
Elena Mantovan - 通讯作者:
Elena Mantovan
Elena Mantovan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elena Mantovan', 18)}}的其他基金
Arithmetic Applications of the Geometry of Shimura Varieties
志村品种几何学的算术应用
- 批准号:
2200694 - 财政年份:2022
- 资助金额:
$ 15.6万 - 项目类别:
Continuing Grant
Shimura varieties and their local models
志村品种及其当地模型
- 批准号:
0701310 - 财政年份:2007
- 资助金额:
$ 15.6万 - 项目类别:
Standard Grant
相似国自然基金
模p Langlands 纲领和Shimura曲线的上同调
- 批准号:11971028
- 批准年份:2019
- 资助金额:52.0 万元
- 项目类别:面上项目
Shimura曲线上算术Siegel-Weil公式
- 批准号:11401470
- 批准年份:2014
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
多元自守形式的算术和混合Shimura簇的理论
- 批准号:19871013
- 批准年份:1998
- 资助金额:5.5 万元
- 项目类别:面上项目
相似海外基金
Mod p geometry of Shimura varieties and applications
Shimura 品种的 Mod p 几何形状及应用
- 批准号:
EP/Y030648/1 - 财政年份:2023
- 资助金额:
$ 15.6万 - 项目类别:
Research Grant
Arithmetic Applications of the Geometry of Shimura Varieties
志村品种几何学的算术应用
- 批准号:
2200694 - 财政年份:2022
- 资助金额:
$ 15.6万 - 项目类别:
Continuing Grant
Geometry of Shimura varieties in positive characteristic
志村品种的几何形状的积极特征
- 批准号:
21K13765 - 财政年份:2021
- 资助金额:
$ 15.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
- 批准号:
RGPIN-2014-05614 - 财政年份:2018
- 资助金额:
$ 15.6万 - 项目类别:
Discovery Grants Program - Individual
P-adic Methods in the Arithmetic and Geometry of Shimura Varieties
志村品种算术和几何中的 P-adic 方法
- 批准号:
1802169 - 财政年份:2018
- 资助金额:
$ 15.6万 - 项目类别:
Standard Grant
The Arithmetic and Geometry of Integral Models of Orthogonal Shimura Varieties
正交志村品种积分模型的算术和几何
- 批准号:
1803623 - 财政年份:2017
- 资助金额:
$ 15.6万 - 项目类别:
Standard Grant
Arithmetic Geometry: Shimura Varieties, Galois Modules, and Iwasawa Theory
算术几何:志村簇、伽罗瓦模和岩泽理论
- 批准号:
1701619 - 财政年份:2017
- 资助金额:
$ 15.6万 - 项目类别:
Standard Grant
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
- 批准号:
RGPIN-2014-05614 - 财政年份:2017
- 资助金额:
$ 15.6万 - 项目类别:
Discovery Grants Program - Individual
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
- 批准号:
RGPIN-2014-05614 - 财政年份:2016
- 资助金额:
$ 15.6万 - 项目类别:
Discovery Grants Program - Individual
New applications of the geometry of Shimura varieties to number theory on totally real number fields
志村簇几何在全实数域数论中的新应用
- 批准号:
15K17518 - 财政年份:2015
- 资助金额:
$ 15.6万 - 项目类别:
Grant-in-Aid for Young Scientists (B)