Arithmetic Geometry: Shimura Varieties, Galois Modules, and Iwasawa Theory
算术几何:志村簇、伽罗瓦模和岩泽理论
基本信息
- 批准号:1701619
- 负责人:
- 金额:$ 8.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns research in the field of arithmetic algebraic geometry. This is a subject that blends two of the oldest areas of mathematics: the geometry of shapes that can be described by the simplest equations, namely polynomials, and the study of numbers. This combination of disciplines has proved extraordinarily fruitful, having solved challenges (such as the recent proof of Fermat's last theorem) that had withstood generations of effort. The field has connections with physics, and has found important applications to the construction of error-correcting codes and cryptography. This research focuses on the study of specific polynomial equations that have many symmetries. This project aims to describe integral models for Shimura varieties at primes of non-smooth reduction and will study related p-adic spaces. In particular, the work continues investigation of the singularities of Shimura varieties of abelian type at such primes. The project aims to characterize these integral models via a suitable Neron extension property and, in the case of orthogonal Shimura varieties, explicitly study the local structure of their reductions. The project also intends to give a general construction and a group theoretic definition of integral models of certain Rapoport-Zink p-adic spaces and, in some cases, fully describe their special fibers. The project additionally studies the representations that appear in the cohomology of varieties over the integers with a finite group action and aims to develop very general fixed point formulae that can be used to calculate equivariant Euler characteristics. Finally, the project explores extending constructions of Iwasawa theory by employing K-theoretic methods; more specifically, obtaining information about the higher codimension primes of the Iwasawa algebra that lie on the support of an Iwasawa module.
本项目涉及算术代数几何领域的研究。这是一个融合了两个最古老的数学领域的学科:可以用最简单的方程(即多项式)描述的形状的几何,以及对数字的研究。这些学科的结合已经被证明是非常有成效的,解决了历经几代人努力的挑战(例如最近费马大定理的证明)。该领域与物理有关,并在构造纠错码和密码学方面发现了重要的应用。本研究主要研究具有多种对称性的特定多项式方程。本项目旨在描述Shimura簇在非光滑约简的素数下的积分模型,并将研究相关的p-进空间。特别地,这项工作继续研究在这样的素数上的阿贝尔型下村变种的奇性。该项目旨在通过适当的Nelon扩张性质来刻画这些积分模型,并且在正交Shimura簇的情况下,显式地研究它们的约化的局部结构。本文还给出了某些Rapoport-Zink p-adi空间的积分模型的一般构造和群论定义,并在某些情况下完全刻画了它们的特殊纤维。此外,该项目还研究了具有有限群作用的整数上的簇的上同调中出现的表示,并旨在发展可用于计算等变欧拉特征的非常一般的不动点公式。最后,本项目利用K-理论的方法研究了岩泽理论的扩展构造;更具体地说,得到了岩泽代数的依赖于岩泽模的高阶余维素数的信息。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Abelian Arithmetic Chern–Simons Theory and Arithmetic Linking Numbers
阿贝尔算术 Chern-Simons 理论和算术连接数
- DOI:10.1093/imrn/rnx271
- 发表时间:2017
- 期刊:
- 影响因子:1
- 作者:Chung, Hee-Joong;Kim, Dohyeong;Kim, Minhyong;Pappas, Georgios;Park, Jeehoon;Yoo, Hwajong
- 通讯作者:Yoo, Hwajong
Higher Chern classes in Iwasawa theory
- DOI:10.1353/ajm.2020.0017
- 发表时间:2015-12
- 期刊:
- 影响因子:1.7
- 作者:F. Bleher;T. Chinburg;Richard Greenberg;M. Kakde;G. Pappas;R. Sharifi;M. Taylor
- 通讯作者:F. Bleher;T. Chinburg;Richard Greenberg;M. Kakde;G. Pappas;R. Sharifi;M. Taylor
Integral models of Shimura varieties with parahoric level structure
- DOI:10.1007/s10240-018-0100-0
- 发表时间:2015-12
- 期刊:
- 影响因子:0
- 作者:M. Kisin;G. Pappas
- 通讯作者:M. Kisin;G. Pappas
ARITHMETIC MODELS FOR SHIMURA VARIETIES
- DOI:10.1142/9789813272880_0059
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:G. Pappas
- 通讯作者:G. Pappas
Cup products in the etale cohomology of number fields
数域 etale 上同调中的杯积
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0.6
- 作者:Bleher, F;Chinburg, T;Greenberg, G;Kakde, K: Pappas;Taylor, M.
- 通讯作者:Taylor, M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Georgios Pappas其他文献
ЯКІСТЬ ВИЩОЇ ОСВІТИ ТА ЕКСПЕРТНИЙ СУПРОВІД ЇЇ ЗАБЕЗПЕЧЕННЯ: ДОСВІД ЄС QUALITY ASSURANCE IN HIGHER EDUCATION AND ITS EXPERT SUPPORT: THE EU EXPERIENCE
高等教育质量保证国家及其专家支持:欧盟的经验
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Georgios Pappas - 通讯作者:
Georgios Pappas
The physical and biogeochemical parameters along the coastal waters of Saudi Arabia during field surveys in summer, 2021
2021年夏季实地调查沙特阿拉伯沿海水域物理和生物地球化学参数
- DOI:
10.5194/essd-16-1703-2024 - 发表时间:
2024 - 期刊:
- 影响因子:11.4
- 作者:
Y. Abualnaja;A. Pavlidou;James H. Churchill;Ioannis Hatzianestis;D. Velaoras;H. Kontoyiannis;V. Papadopoulos;A. Karageorgis;Georgia Assimakopoulou;H. Kaberi;Theodoros Kannelopoulos;C. Parinos;C. Zeri;Dionysios Ballas;Elli Pitta;V. Paraskevopoulou;Afroditi Androni;S. Chourdaki;Vassileia Fioraki;S. Iliakis;Georgia Kabouri;Angeliki Konstantinopoulou;G. Krokos;D. Papageorgiou;Alkiviadis Papageorgiou;Georgios Pappas;E. Plakidi;E. Rousselaki;Ioanna Stavrakaki;E. Tzempelikou;P. Zachioti;A. Yfanti;Theodore Zoulias;Abdulah Al Amoudi;Yasser Alshehri;Ahmad Alharbi;Hammad Al Sulami;Taha Boksmati;Rayan Mutwalli;I. Hoteit - 通讯作者:
I. Hoteit
Existing tools used in the framework of environmental performance
环境绩效框架中使用的现有工具
- DOI:
10.1016/j.scp.2023.101026 - 发表时间:
2023 - 期刊:
- 影响因子:6
- 作者:
I. Papamichael;I. Voukkali;P. Loizia;Georgios Pappas;A. Zorpas - 通讯作者:
A. Zorpas
Horizontal gene transfer confers fermentative metabolism in the respiratory-deficient plant trypanosomatid <em>Phytomonas serpens</em>
- DOI:
10.1016/j.meegid.2012.01.016 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:
- 作者:
Susan Ienne;Georgios Pappas;Karim Benabdellah;Antonio González;Bianca Zingales - 通讯作者:
Bianca Zingales
Horton’s three sisters: familial clustering of temporal arteritis
- DOI:
10.1007/s10067-007-0610-5 - 发表时间:
2007-03-27 - 期刊:
- 影响因子:2.800
- 作者:
Lampros Raptis;Georgios Pappas;Nikolaos Akritidis - 通讯作者:
Nikolaos Akritidis
Georgios Pappas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Georgios Pappas', 18)}}的其他基金
Shimura Varieties, p-Adic Shtukas, and Local Systems
志村品种、p-Adic Shtukas 和本地系统
- 批准号:
2100743 - 财政年份:2021
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Chern classes in Iwasawa Theory
FRG:合作研究:岩泽理论中的陈省身课程
- 批准号:
1360733 - 财政年份:2014
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
Shimura varieties, Galois modules and Galois representations
Shimura 簇、伽罗瓦模和伽罗瓦表示
- 批准号:
1102208 - 财政年份:2011
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
Shimura varieties, Galois representations and Riemann-Roch theorems
Shimura 簇、Galois 表示和 Riemann-Roch 定理
- 批准号:
0802686 - 财政年份:2008
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Shimura Varieties and Galois Modules
Shimura 簇和伽罗瓦模块
- 批准号:
0501049 - 财政年份:2005
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Shimura Varieties, Galois Modules and the Determinant of Cohomology
Shimura 簇、伽罗瓦模和上同调行列式
- 批准号:
0201140 - 财政年份:2002
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
Shimura Varieties, Galois Modules and L-functions
Shimura 簇、伽罗瓦模块和 L 函数
- 批准号:
9970378 - 财政年份:1999
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Mathematical Sciences: Arithmetic Models for Shimura Varieties, L-Functions and Cohomology Groups as Integral Representations
数学科学:Shimura 簇、L 函数和上同调群的算术模型作为积分表示
- 批准号:
9996393 - 财政年份:1999
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Arithmetic Models for Shimura Varieties, L-Functions and Cohomology Groups as Integral Representations
数学科学:Shimura 簇、L 函数和上同调群的算术模型作为积分表示
- 批准号:
9623269 - 财政年份:1996
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Models for Hilbert Varieties and Galois Structure of deRham Cohomology
数学科学:希尔伯特簇模型和 deRham 上同调的伽罗瓦结构
- 批准号:
9596104 - 财政年份:1994
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mod p geometry of Shimura varieties and applications
Shimura 品种的 Mod p 几何形状及应用
- 批准号:
EP/Y030648/1 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别:
Research Grant
Arithmetic Applications of the Geometry of Shimura Varieties
志村品种几何学的算术应用
- 批准号:
2200694 - 财政年份:2022
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
Geometry of Shimura varieties in positive characteristic
志村品种的几何形状的积极特征
- 批准号:
21K13765 - 财政年份:2021
- 资助金额:
$ 8.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
- 批准号:
RGPIN-2014-05614 - 财政年份:2018
- 资助金额:
$ 8.4万 - 项目类别:
Discovery Grants Program - Individual
P-adic Methods in the Arithmetic and Geometry of Shimura Varieties
志村品种算术和几何中的 P-adic 方法
- 批准号:
1802169 - 财政年份:2018
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
The Arithmetic and Geometry of Integral Models of Orthogonal Shimura Varieties
正交志村品种积分模型的算术和几何
- 批准号:
1803623 - 财政年份:2017
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
- 批准号:
RGPIN-2014-05614 - 财政年份:2017
- 资助金额:
$ 8.4万 - 项目类别:
Discovery Grants Program - Individual
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
- 批准号:
RGPIN-2014-05614 - 财政年份:2016
- 资助金额:
$ 8.4万 - 项目类别:
Discovery Grants Program - Individual
New applications of the geometry of Shimura varieties to number theory on totally real number fields
志村簇几何在全实数域数论中的新应用
- 批准号:
15K17518 - 财政年份:2015
- 资助金额:
$ 8.4万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The Arithmetic and Geometry of Integral Models of Orthogonal Shimura Varieties
正交志村品种积分模型的算术和几何
- 批准号:
1502142 - 财政年份:2015
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant














{{item.name}}会员




