Problems in Function Theory and Operator Theory
函数论和算子理论中的问题
基本信息
- 批准号:1001488
- 负责人:
- 金额:$ 18.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-15 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The applicant proposes to work on two sets of problems. The first is a continuation of the applicant's collaboration with Arcozzi (Bologna), Sawyer (Hamilton), and Wick (Atlanta). This group is working on specific problems in the operator theoretic function theory of spaces of holomorphic functions which are subspaces of potential spaces. The classical Dirichlet space is a fundamental example; the Drury-Arveson-Hardy space is perhaps the most important example. The questions are similar to the questions classically considered for subspaces of Lebesgue spaces; questions about interpolation, zero sets, multiplier algebras, coronas, etc. However the techniques required are quite different, involving capacity theory and involving use of discrete models for both the space of holomorphic functions and the containing potential space. The work on a second set of problems is work in collaboration with Xiang Tang (St. Louis) trying to understand the various roles of the Rankin-Cohen brackets. The brackets are constant coefficient bidifferential operators whose coefficients are combinatorial numbers. These operators arise naturally in a wide range of settings. Some of the structural reasons for their ubiquity are now understood, but the occurrence of the brackets in certain contexts of particular interest to the applicant is poorly understood. A goal of the proposed research is to improve that situation.In the 1970s and 1980s there were profound mathematical advances at the interface of commutative harmonic analysis and function theory. The research was driven by a desire to see how several very productive, but seemingly very different, viewpoints could be used together to get a deeper understanding of transformation rules for waveforms. The successful unification of the viewpoints allowed resolution of long standing mathematical questions. The improved insight also led to fundamental innovations in data analysis and signal processing; using wavelets for image compression was an early success and by now the descendents of these ideas are a standard part of the toolkit of many computer scientist and electrical engineers. The theoretical tools and insights developed during that time also brought the questions in this proposal within reach. The specific questions being considered are of direct mathematical interest. The analytical tools being developed to work on the questions will, again, broaden and deepen the understanding of how waveforms can be analyzed and manipulated. The questions about the Rankin-Cohen brackets are of a different sort. When very complicated and very elegant expressions arise in several seemingly unrelated contexts there is, for many mathematicians, a compelling aesthetic imperative to find the underlying reason. There is a great tradition of working on such questions and although the answers are often mundane, sometimes they are quite profound.
申请人提议处理两组问题。第一个是申请人与Arcozzi(博洛尼亚),索耶(汉密尔顿)和威克(亚特兰大)合作的延续。这个小组的工作具体问题的算子理论的功能理论空间的全纯函数是子空间的潜在空间。经典的狄利克雷空间是一个基本的例子;德鲁里-阿维森-哈代空间也许是最重要的例子。这些问题是类似的问题经典考虑的子空间的勒贝格空间;问题的插值,零集,乘子代数,冠等,但所需的技术是完全不同的,涉及能力理论和涉及使用离散模型的空间全纯函数和包含潜在的空间。第二组问题的工作是与Xiang Tang(圣路易斯)合作,试图理解Rankin-Cohen括号的各种作用。括号是常系数双微分算子,其系数是组合数。这些操作符在广泛的环境中自然出现。它们普遍存在的一些结构原因现在已经被理解,但是在申请人特别感兴趣的某些上下文中括号的出现却知之甚少。在20世纪70年代和80年代,在交换调和分析和函数论的界面上有了深刻的数学进步。这项研究是由一个愿望,看看几个非常富有成效的,但似乎非常不同的观点可以一起使用,以获得更深入的了解波形的转换规则。 成功的统一的观点允许解决长期存在的数学问题。改进的洞察力也导致了数据分析和信号处理方面的根本性创新;使用小波进行图像压缩是早期的成功,现在这些想法的后代是许多计算机科学家和电气工程师工具包的标准组成部分。在此期间开发的理论工具和见解也使该提案中的问题触手可及。正在考虑的具体问题是直接的数学兴趣。为解决这些问题而开发的分析工具将再次拓宽和加深对波形如何分析和操纵的理解。关于Rankin-Cohen括号的问题是另一种类型的。当非常复杂和非常优雅的表达式出现在几个看似无关的上下文中时,对许多数学家来说,有一种令人信服的美学必要性来找到根本原因。有一个伟大的传统,致力于这些问题,虽然答案往往是平凡的,有时他们是相当深刻的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Rochberg其他文献
Complex hyperbolic geometry and Hilbert spaces with complete Pick kernels
- DOI:
10.1016/j.jfa.2018.08.017 - 发表时间:
2019-03-01 - 期刊:
- 影响因子:
- 作者:
Richard Rochberg - 通讯作者:
Richard Rochberg
Bergman kernel asymptotics for generalized Fock spaces
- DOI:
10.1007/bf02790262 - 发表时间:
2001-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Finbarr Holland;Richard Rochberg - 通讯作者:
Richard Rochberg
Geometry of Five Point Sets in the Complex Ball
- DOI:
10.1007/s11785-024-01502-8 - 发表时间:
2024-03-24 - 期刊:
- 影响因子:0.800
- 作者:
Richard Rochberg - 通讯作者:
Richard Rochberg
The effect of boundary geometry on Hankel operators belonging to the trace ideals of Bergman spaces
- DOI:
10.1007/bf01191818 - 发表时间:
1997-06-01 - 期刊:
- 影响因子:0.900
- 作者:
Steven G. Krantz;Song-Ying Li;Richard Rochberg - 通讯作者:
Richard Rochberg
Richard Rochberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Rochberg', 18)}}的其他基金
Problems in Function Theory and Operator Theory
函数论和算子理论中的问题
- 批准号:
0700238 - 财政年份:2007
- 资助金额:
$ 18.24万 - 项目类别:
Standard Grant
Problems in Function Theory and Operator Theory
函数论和算子理论中的问题
- 批准号:
0400962 - 财政年份:2004
- 资助金额:
$ 18.24万 - 项目类别:
Continuing Grant
Problems in Function Theory and Operator Theory
函数论和算子理论中的问题
- 批准号:
0070642 - 财政年份:2000
- 资助金额:
$ 18.24万 - 项目类别:
Continuing Grant
Mathematical Sciences/GIG: "Research and Training in Computational Harmonic Analysis"
数学科学/GIG:“计算调和分析的研究和培训”
- 批准号:
9631359 - 财政年份:1996
- 资助金额:
$ 18.24万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research Group in Analysis
数学科学:分析研究小组
- 批准号:
9531967 - 财政年份:1996
- 资助金额:
$ 18.24万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research Group in Harmonic Analysis
数学科学:调和分析研究组
- 批准号:
9302828 - 财政年份:1993
- 资助金额:
$ 18.24万 - 项目类别:
Continuing Grant
Mathematical Sciences: Spaces of Analytic Functions
数学科学:解析函数空间
- 批准号:
8701271 - 财政年份:1987
- 资助金额:
$ 18.24万 - 项目类别:
Continuing Grant
Mathematical Sciences: Spaces of Analytic Functions
数学科学:解析函数空间
- 批准号:
8402191 - 财政年份:1984
- 资助金额:
$ 18.24万 - 项目类别:
Continuing Grant
Linear Structure of Function Algebras
函数代数的线性结构
- 批准号:
7605789 - 财政年份:1976
- 资助金额:
$ 18.24万 - 项目类别:
Standard Grant
相似国自然基金
原生动物四膜虫生殖小核(germline nucleus)体功能(somatic function)的分子基础研究
- 批准号:31872221
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Problems in geometric function theory
几何函数论问题
- 批准号:
1361836 - 财政年份:2014
- 资助金额:
$ 18.24万 - 项目类别:
Continuing Grant
Problems on the geometric function theory in several complex variables and complex geometry
几何函数论中的多复变数和复几何问题
- 批准号:
1300867 - 财政年份:2013
- 资助金额:
$ 18.24万 - 项目类别:
Continuing Grant
Problems on the geometric function theory in several complex variables and complex geometry
几何函数论中的多复变数和复几何问题
- 批准号:
1412384 - 财政年份:2013
- 资助金额:
$ 18.24万 - 项目类别:
Continuing Grant
Problems in Function Theory with Applications
函数论问题及其应用
- 批准号:
1201427 - 财政年份:2012
- 资助金额:
$ 18.24万 - 项目类别:
Standard Grant
Applications of Boundary Harnack Inequalities for p Harmonic Functions to Problems in Harmonic Analysis, PDE, and Function Theory
p 调和函数的边界 Harnack 不等式在调和分析、偏微分方程和函数论问题中的应用
- 批准号:
0900291 - 财政年份:2009
- 资助金额:
$ 18.24万 - 项目类别:
Continuing Grant
Number Theory Problems Over Local Fields and Function Fields
局部域和函数域的数论问题
- 批准号:
0917686 - 财政年份:2008
- 资助金额:
$ 18.24万 - 项目类别:
Continuing Grant
Problems in Function Theory and Operator Theory
函数论和算子理论中的问题
- 批准号:
0700238 - 财政年份:2007
- 资助金额:
$ 18.24万 - 项目类别:
Standard Grant
Number Theory Problems Over Local Fields and Function Fields
局部域和函数域的数论问题
- 批准号:
0600919 - 财政年份:2006
- 资助金额:
$ 18.24万 - 项目类别:
Continuing Grant
Problems of Existence, Uniqueness, and Dimension in Harmonic Analysis, Function Theory, and Partial Differential Equations
调和分析、函数论和偏微分方程中的存在性、唯一性和维数问题
- 批准号:
0552281 - 财政年份:2006
- 资助金额:
$ 18.24万 - 项目类别:
Standard Grant