Problems in Function Theory

函数论问题

基本信息

  • 批准号:
    0758619
  • 负责人:
  • 金额:
    $ 12.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

The principal investigator and his students will work on problems in three areas of complex analysis. The first set of problems concerns approximating an arbitrary Blaschke product, in uniform norm or in BMO norm, by Blaschke products whose zeros are sufficiently separated that the corresponding Riesz mass is bounded in all holomorphic coordinate systems (i.e., it is a Carleson measure). A particular problem in this area is to find a direct proof of the equivalence of two conditions, the Muckenhoupt condition and the Helson-Szego condition, that are necessary and sufficient for the Hilbert transform to be bounded on a weighted Hilbert space. Another is to resolve the Nikolski conjecture that there is a Riesz basis of evaluation functionals for any model subspace (i.e., the orthogonal complement of an invariant subspace for the unilateral shift on Hilbert space). Solving these problems should require deeper understandings of the Hilbert transform and the hyperbolic metric. The second set of problems it to prove the corona theorem for some classes of infinitely connected plane domains, including the complement of the product of the Cantor middle-third set with itself and the complements of positive length subsets of Lipschitz graphs. The third problem set involves extending beautiful recent work of David, Tolsa, Volberg, and others on analytic capacity to Lipschitz harmonic capacity in higher dimensional Euclidean space, in particular, to prove that n-dimensional Lipschitz harmonic capacity is a bilipschitz invariant.The methods to be used on these problems will be constructive, so that in some cases they can yield explicit computer-aided constructions of analytic functions and conformal mappings. Analytic functions and conformal mappings have broad applications in fluid dynamics, acoustics, and electrical engineering, and in these applications explicit constructions are more useful than general existence theorems. The mathematics needed to study these problems includes many ideas and methods from harmonic analysis, partial differential equations, hyperbolic geometry, and geometric measure theory. As a result, the students who work on these problems will obtain a broad mathematical training.
首席研究员和他的学生将致力于复杂分析的三个领域的问题。第一组问题涉及用Blaschke积以一致范数或BMO范数逼近任意Blaschke积,这些Blaschke积的零点充分分离,使得相应的Riesz质量在所有全纯坐标系中是有界的(即,它是Carleson测度)。这一领域的一个特殊问题是直接证明两个条件的等价性,即Muckenoupt条件和Helson-Szego条件,这两个条件是希尔伯特变换在加权希尔伯特空间上有界的充要条件。另一种是解决Nikolski猜想,即对任何模型子空间(即Hilbert空间上单边移位的不变子空间的正交补),都存在赋值泛函的Riesz基。解决这些问题需要对希尔伯特变换和双曲度规有更深的理解。第二组问题证明了几类无限连通平面域的冠状定理,包括Cantor中间三分集与其自身的乘积的补集和Lipschitz图的正长子集的补集。第三个问题集涉及将David,Tolsa,Volberg等人最近关于解析容量的漂亮工作推广到高维欧氏空间中的Lipschitz调和容量,特别是证明了n维Lipschitz调和容量是bilipschitz不变量.这些问题的方法将是建设性的,以便在某些情况下它们可以得到解析函数和共形映射的显式计算机辅助构造.解析函数和共形映射在流体力学、声学和电学中有着广泛的应用,在这些应用中,显式构造比一般存在定理更有用。研究这些问题所需要的数学方法包括调和分析、偏微分方程、双曲几何和几何测度论的许多思想和方法。因此,研究这些问题的学生将获得广泛的数学培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Garnett其他文献

357 - The Classification, Frequency and Clinical Significance of Atypical Prostate Hyperplasia (APH) in Otherwise Benign Prostatic Needle Biopsies (BX)
  • DOI:
    10.1016/s0022-5347(17)75507-3
  • 发表时间:
    1987-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    John Garnett;Michael Carter;Ryoichi Oyasu
  • 通讯作者:
    Ryoichi Oyasu

John Garnett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Garnett', 18)}}的其他基金

Problems in Function Theory
函数论问题
  • 批准号:
    0401720
  • 财政年份:
    2004
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Standard Grant
Problems in Function Theory
函数论问题
  • 批准号:
    0070782
  • 财政年份:
    2000
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Continuing Grant
Kakeya Maximal Operators and Oscillatory Integrals
Kakeya 极大算子和振荡积分
  • 批准号:
    9706764
  • 财政年份:
    1997
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Problems in Function Theory
数学科学:函数论问题
  • 批准号:
    9401269
  • 财政年份:
    1994
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometric Properties of Domains, Extremal Quasiconformal Mappings and Integrability of Conformal Mappings
数学科学:域的几何性质、极值拟共形映射和共形映射的可积性
  • 批准号:
    9203407
  • 财政年份:
    1992
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Functional Analysis and Function Theory
数学科学:泛函分析和函数论
  • 批准号:
    9104446
  • 财政年份:
    1991
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Harmonic Measure Analytic Capacity and Rectifiable Sets
数学科学:调和测度分析能力和可整流集
  • 批准号:
    9100671
  • 财政年份:
    1991
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Standard Grant

相似国自然基金

原生动物四膜虫生殖小核(germline nucleus)体功能(somatic function)的分子基础研究
  • 批准号:
    31872221
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Problems in geometric function theory
几何函数论问题
  • 批准号:
    1361836
  • 财政年份:
    2014
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Continuing Grant
Problems on the geometric function theory in several complex variables and complex geometry
几何函数论中的多复变数和复几何问题
  • 批准号:
    1300867
  • 财政年份:
    2013
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Continuing Grant
Problems on the geometric function theory in several complex variables and complex geometry
几何函数论中的多复变数和复几何问题
  • 批准号:
    1412384
  • 财政年份:
    2013
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Continuing Grant
Problems in Function Theory with Applications
函数论问题及其应用
  • 批准号:
    1201427
  • 财政年份:
    2012
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Standard Grant
Problems in Function Theory and Operator Theory
函数论和算子理论中的问题
  • 批准号:
    1001488
  • 财政年份:
    2010
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Continuing Grant
Applications of Boundary Harnack Inequalities for p Harmonic Functions to Problems in Harmonic Analysis, PDE, and Function Theory
p 调和函数的边界 Harnack 不等式在调和分析、偏微分方程和函数论问题中的应用
  • 批准号:
    0900291
  • 财政年份:
    2009
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Continuing Grant
Number Theory Problems Over Local Fields and Function Fields
局部域和函数域的数论问题
  • 批准号:
    0917686
  • 财政年份:
    2008
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Continuing Grant
Problems in Function Theory and Operator Theory
函数论和算子理论中的问题
  • 批准号:
    0700238
  • 财政年份:
    2007
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Standard Grant
Number Theory Problems Over Local Fields and Function Fields
局部域和函数域的数论问题
  • 批准号:
    0600919
  • 财政年份:
    2006
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Continuing Grant
Problems of Existence, Uniqueness, and Dimension in Harmonic Analysis, Function Theory, and Partial Differential Equations
调和分析、函数论和偏微分方程中的存在性、唯一性和维数问题
  • 批准号:
    0552281
  • 财政年份:
    2006
  • 资助金额:
    $ 12.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了