Problems in Function Theory with Applications

函数论问题及其应用

基本信息

  • 批准号:
    1201427
  • 负责人:
  • 金额:
    $ 18.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-06-01 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

The PI proposes to study several problems in geometric function theory that have as common underlying theme "conformal invariants" such as the hyperbolic and Kobayashi metric, harmonic measure, Green's functions, and modulus of path families. One such problem consists in studying dimensionality properties of p-Harmonic measure on domains beyond simply-connected ones. A second question deals with generalizations of the Chang-Marshall theorem in space, namely with exponential integrability properties for the trace of analytic functions, and their quasiregular counterparts in higher dimensions, when restricted to the boundary. A third problems studies iteration of analytic functions in one and several dimensions with a focus on the interplay between complex dynamics and the hyperbolic geometry of the unit disk in the complex plane and of the unit ball in higher dimensions.This research will also draw on the properties of conformal invariants mentioned above to obtain concrete applications in the study of large networks. This is an area that has become more salient with the advent of the internet and the need to analyze large databases (so-called massive data-sets). One example that most people are familiar with is search-engines. The way internet searches work is through random processes that continually sample the web and periodically return averages and other statistics. The simplest such process is called a random crawler or walker and the mathematics that governs its behavior is derived from the study of conformal invariants in geometric function theory. The PI is conducting research that is expected to bring new tools to the task of comparing the behavior of such random processes to the geometry of the data-set. Because of the large applicability of such results the PI will also study the problem of epidemic outbreaks. In this context the PI has already obtained initial funding from the Center for Engagement and Community Development at Kansas State University for a joint project with Professor Scoglio in the Department of Electrical and Computing Engineering and Professor Schumm in the Department of Family Studies. Our team collected data in the city of Chanute, Kansas, and has already built a "contact" network, which is now being analyzed using the conformal invariants mentioned above. The ultimate goal is to provide the city of Chanute with a concrete set of directions that could help its city officials mitigate and manage an epidemic outbreak, especially one of zoonotic nature, originating on a farm.
PI建议研究几何函数理论中的几个问题,这些问题具有共同的基本主题“共形不变量”,如双曲和小林度量、调和测度、绿色函数和路径族模。其中一个问题是研究单连通域以外区域上p-调和测度的维数性质。第二个问题涉及张马歇尔定理在空间中的推广,即解析函数的迹的指数可积性,以及它们在高维中的准正则对应物,当被限制在边界上时。第三个问题研究一维和多维解析函数的迭代,重点是复动力学与复平面中单位圆盘和高维单位球的双曲几何之间的相互作用。本研究还将利用上述共形不变量的性质,在大型网络的研究中获得具体的应用。这是一个随着互联网的出现和分析大型数据库(所谓的海量数据集)的需求而变得更加突出的领域。大多数人都熟悉的一个例子是搜索引擎。互联网搜索的工作方式是通过随机过程,不断对网络进行采样,并定期返回平均值和其他统计数据。最简单的这种过程被称为随机爬行者或步行者,控制其行为的数学是从几何函数理论中的共形不变量的研究中得出的。PI正在进行的研究有望为将此类随机过程的行为与数据集的几何形状进行比较的任务带来新的工具。由于这些结果的广泛适用性,PI还将研究流行病爆发的问题。在这种情况下,PI已经从堪萨斯州立大学的参与和社区发展中心获得了初步资金,用于与电气和计算机工程系的Scoglio教授和家庭研究系的Schumm教授进行联合项目。我们的团队在堪萨斯的沙努特市收集了数据,并且已经建立了一个“接触”网络,现在正在使用上面提到的共形不变量进行分析。最终目标是为沙努特市提供一套具体的指导方针,帮助该市官员减轻和管理流行病的爆发,特别是源于农场的人畜共患病性质的爆发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pietro Poggi-Corradini其他文献

Generalization of effective conductance centrality for egonetworks
  • DOI:
    10.1016/j.physa.2018.07.039
  • 发表时间:
    2018-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Heman Shakeri;Behnaz Moradi-Jamei;Pietro Poggi-Corradini;Nathan Albin;Caterina Scoglio
  • 通讯作者:
    Caterina Scoglio
Shape space of achiral simplexes
  • DOI:
    10.1007/bf01165566
  • 发表时间:
    1993-01-01
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Kurt Mislow;Pietro Poggi-Corradini
  • 通讯作者:
    Pietro Poggi-Corradini
Iteration in the disk and the ball: a survey of the role of hyperbolic geometry
  • DOI:
    10.1007/s13324-011-0018-x
  • 发表时间:
    2011-12-17
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Pietro Poggi-Corradini
  • 通讯作者:
    Pietro Poggi-Corradini
On the Uniqueness of Classical Semiconjugations for Self-Maps of the Disk

Pietro Poggi-Corradini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pietro Poggi-Corradini', 18)}}的其他基金

Interactions among Analysis, Optimization, and Network Science
分析、优化和网络科学之间的相互作用
  • 批准号:
    2154032
  • 财政年份:
    2022
  • 资助金额:
    $ 18.73万
  • 项目类别:
    Standard Grant
Modern Aspects of Complex Analysis and Its Applications
复分析的现代方面及其应用
  • 批准号:
    1901600
  • 财政年份:
    2019
  • 资助金额:
    $ 18.73万
  • 项目类别:
    Standard Grant
Analytic Self Maps of the Disk and Related Operators
磁盘及相关操作符的分析自映射
  • 批准号:
    9896337
  • 财政年份:
    1998
  • 资助金额:
    $ 18.73万
  • 项目类别:
    Standard Grant
Analytic Self Maps of the Disk and Related Operators
磁盘及相关操作符的分析自映射
  • 批准号:
    9706408
  • 财政年份:
    1997
  • 资助金额:
    $ 18.73万
  • 项目类别:
    Standard Grant

相似国自然基金

原生动物四膜虫生殖小核(germline nucleus)体功能(somatic function)的分子基础研究
  • 批准号:
    31872221
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Problems in geometric function theory
几何函数论问题
  • 批准号:
    1361836
  • 财政年份:
    2014
  • 资助金额:
    $ 18.73万
  • 项目类别:
    Continuing Grant
Problems on the geometric function theory in several complex variables and complex geometry
几何函数论中的多复变数和复几何问题
  • 批准号:
    1300867
  • 财政年份:
    2013
  • 资助金额:
    $ 18.73万
  • 项目类别:
    Continuing Grant
Problems on the geometric function theory in several complex variables and complex geometry
几何函数论中的多复变数和复几何问题
  • 批准号:
    1412384
  • 财政年份:
    2013
  • 资助金额:
    $ 18.73万
  • 项目类别:
    Continuing Grant
Problems in Function Theory and Operator Theory
函数论和算子理论中的问题
  • 批准号:
    1001488
  • 财政年份:
    2010
  • 资助金额:
    $ 18.73万
  • 项目类别:
    Continuing Grant
Applications of Boundary Harnack Inequalities for p Harmonic Functions to Problems in Harmonic Analysis, PDE, and Function Theory
p 调和函数的边界 Harnack 不等式在调和分析、偏微分方程和函数论问题中的应用
  • 批准号:
    0900291
  • 财政年份:
    2009
  • 资助金额:
    $ 18.73万
  • 项目类别:
    Continuing Grant
Problems in Function Theory
函数论问题
  • 批准号:
    0758619
  • 财政年份:
    2008
  • 资助金额:
    $ 18.73万
  • 项目类别:
    Standard Grant
Number Theory Problems Over Local Fields and Function Fields
局部域和函数域的数论问题
  • 批准号:
    0917686
  • 财政年份:
    2008
  • 资助金额:
    $ 18.73万
  • 项目类别:
    Continuing Grant
Problems in Function Theory and Operator Theory
函数论和算子理论中的问题
  • 批准号:
    0700238
  • 财政年份:
    2007
  • 资助金额:
    $ 18.73万
  • 项目类别:
    Standard Grant
Number Theory Problems Over Local Fields and Function Fields
局部域和函数域的数论问题
  • 批准号:
    0600919
  • 财政年份:
    2006
  • 资助金额:
    $ 18.73万
  • 项目类别:
    Continuing Grant
Problems of Existence, Uniqueness, and Dimension in Harmonic Analysis, Function Theory, and Partial Differential Equations
调和分析、函数论和偏微分方程中的存在性、唯一性和维数问题
  • 批准号:
    0552281
  • 财政年份:
    2006
  • 资助金额:
    $ 18.73万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了