Problems on the geometric function theory in several complex variables and complex geometry
几何函数论中的多复变数和复几何问题
基本信息
- 批准号:1300867
- 负责人:
- 金额:$ 12.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This mathematics research project by Yuan Yuan concerns a number of problems in several complex variables and complex differential geometry, consisting of the rigidity and classification of holomorphic structures, canonical metrics in Kahler geometry, and complex Monge-Ampere equations. These are fundamental problems closely related to many other fields in mathematics and physics, such as, algebraic geometry, mathematical physics, number theory, partial differential equations. In particular, Yuan will study the uniqueness of complex structure on Hermitian symmetric spaces and mapping rigidity between bounded symmetric domains; and the deep relation between the (finite and infinite time) limit behavior of the (parabolic) complex Monge-Ampere equations and canonical Kahler metrics as well as the formation of singularities on Kahler manifolds.The mathematics field of complex analysis took center stage starting with the nineteenth century, when its applications became crucial to other sciences and engineering, including electronic engineering and mechanic engineering. Over the years, this trend has continued and in fact has been taken to the next level: the geometric spaces studied in this mathematics research project by Yuan Yuan can serve as the most basic models in cosmology and general relativity. Clarifying the geometric structure of these models is extremely important in understanding the physical laws that relate to them and can help further our understanding of the shape of the universe. In addition to this work, Yuan will continue to participate in, and organize seminars and workshops for undergraduate and graduate students and young researchers. Yuan will also mentor undergraduate and graduate students, and in this way the project will effectively integrate research and education.
原媛的这项数学研究项目涉及多个复变量和复微分几何中的一系列问题,包括全纯结构的刚性和分类,Kahler几何中的正则度量,以及复Monge-Ampere方程。这些都是与数学和物理中的许多其他领域密切相关的基本问题,如代数几何、数学物理、数论、偏微分方程组。特别是,袁将研究厄米特对称空间上复结构的唯一性和有界对称域之间的映射刚性;(抛物型)复Monge-Ampere方程的(有限和无限时间)极限行为与正则Kahler度量以及Kahler流形上奇点形成之间的深层联系。复分析的数学领域从19世纪开始成为中心,当时它的应用对其他科学和工程,包括电子工程和机械工程变得至关重要。多年来,这一趋势一直在继续,事实上已经更上一层楼:原媛在这项数学研究项目中研究的几何空间可以作为宇宙学和广义相对论中最基本的模型。弄清这些模型的几何结构对于理解与它们相关的物理规律极其重要,并有助于进一步了解宇宙的形状。除了这项工作,袁还将继续参与并为本科生、研究生和青年研究人员组织研讨会和研讨会。袁还将指导本科生和研究生,通过这种方式,该项目将有效地整合研究和教育。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuan Yuan其他文献
2-D image reconstruction of photoacoustic endoscopic imaging based on time-reversal
基于时间反转的光声内窥镜成像二维图像重建
- DOI:
10.1016/j.compbiomed.2016.06.028 - 发表时间:
2016-09-01 - 期刊:
- 影响因子:7.7
- 作者:
Sun Zheng;Han Duoduo;Yuan Yuan - 通讯作者:
Yuan Yuan
Tethering of rhBMP-2 upon calcium phosphate cement via alendronate/heparin for localized, sustained and enhanced osteoactivity
通过阿仑膦酸盐/肝素将 rhBMP-2 束缚在磷酸钙水泥上,以实现局部、持续和增强的骨活性
- DOI:
10.1039/c7ra01908d - 发表时间:
2017-04 - 期刊:
- 影响因子:3.9
- 作者:
Zhu Jiaoyang;Huang Baolin;Ding Sai;Zhang Wenjing;Ma Xiaoyu;Niu Haoyi;Yuan Yuan;Liu Changsheng - 通讯作者:
Liu Changsheng
Facile Fabrication of Transparent Superhydrophobic Film Based on PTFE by One-Step Hot Melting Process
一步热熔工艺轻松制备基于 PTFE 的透明超疏水薄膜
- DOI:
10.1166/jnn.2016.12035 - 发表时间:
2016-09 - 期刊:
- 影响因子:0
- 作者:
Zhuang Aoyun;Yang Lijun;Zhao Xuetong;Guo Chao;Zuo Zhiping;Yuan Yuan - 通讯作者:
Yuan Yuan
Superspin glass behavior and giant exchange bias effect in hexagonal (Mn0.7Cu0.3)66Ga34 ferrimagnet
六方(Mn0.7Cu0.3)66Ga34亚铁磁体中的超自旋玻璃行为和巨交换偏磁效应
- DOI:
10.1016/j.jmmm.2020.167532 - 发表时间:
2021-03 - 期刊:
- 影响因子:2.7
- 作者:
Hai Zeng;Guang Yu;Yuan Yuan;Wenjing Wang;Xiaohua Luo;Changcai Chen;Sajjad Ur Rehman;Gabrielle Yuan;Shengcan Ma;Zhenchen Zhong - 通讯作者:
Zhenchen Zhong
Digital image correlation with gray gradient constraints: Application to spatially variant speckle images
具有灰度梯度约束的数字图像相关性:在空间变异散斑图像中的应用
- DOI:
10.1016/j.optlaseng.2015.07.012 - 发表时间:
2016-02 - 期刊:
- 影响因子:4.6
- 作者:
Yuan Yuan;Zhan Qin;Huang Jianyong;Fang Jing;Xiong Chunyang - 通讯作者:
Xiong Chunyang
Yuan Yuan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuan Yuan', 18)}}的其他基金
NEAM 2019: The 4TH Northeastern Analysis Meeting
NEAM 2019:第四届东北分析会议
- 批准号:
1936602 - 财政年份:2019
- 资助金额:
$ 12.7万 - 项目类别:
Standard Grant
Problems on the geometric function theory in several complex variables and complex geometry
几何函数论中的多复变数和复几何问题
- 批准号:
1412384 - 财政年份:2013
- 资助金额:
$ 12.7万 - 项目类别:
Continuing Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
对RS和AG码新型软判决代数译码的研究
- 批准号:61671486
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
Ginzburg-Landau 型发展方程的拓扑缺陷以及相关问题研究
- 批准号:11071206
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
Bose-Einstein凝聚、超导G-L模型以及相关问题研究
- 批准号:10771181
- 批准年份:2007
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Energy-Minimal Principles in Geometric Function Theory
几何函数理论中的能量最小原理
- 批准号:
2154943 - 财政年份:2022
- 资助金额:
$ 12.7万 - 项目类别:
Standard Grant
Geometric Function Theory and Mathematical Physics
几何函数论与数学物理
- 批准号:
RGPIN-2019-04940 - 财政年份:2022
- 资助金额:
$ 12.7万 - 项目类别:
Discovery Grants Program - Individual
The role of geometric structure in avoidance of oxygen rebound to enable aliphatic halogenation and oxacyclization by non-heme Fe(IV)-oxo (ferryl) complexes
几何结构在避免氧反弹以实现非血红素 Fe(IV)-氧代(铁基)络合物的脂肪族卤化和氧环化中的作用
- 批准号:
10445980 - 财政年份:2022
- 资助金额:
$ 12.7万 - 项目类别:
The role of geometric structure in avoidance of oxygen rebound to enable aliphatic halogenation and oxacyclization by non-heme Fe(IV)-oxo (ferryl) complexes
几何结构在避免氧反弹以实现非血红素 Fe(IV)-氧代(铁基)络合物的脂肪族卤化和氧环化中的作用
- 批准号:
10798457 - 财政年份:2022
- 资助金额:
$ 12.7万 - 项目类别:
The role of geometric structure in avoidance of oxygen rebound to enable aliphatic halogenation and oxacyclization by non-heme Fe(IV)-oxo (ferryl) complexes
几何结构在避免氧反弹以实现非血红素 Fe(IV)-氧代(铁基)络合物的脂肪族卤化和氧环化中的作用
- 批准号:
10701682 - 财政年份:2022
- 资助金额:
$ 12.7万 - 项目类别:
Novel Cardiac MRI-Based Predictors for Tetralogy of Fallot: Deformation, Kinematic, and Geometric Analyses
基于心脏 MRI 的新型法洛四联症预测因子:变形、运动学和几何分析
- 批准号:
10352409 - 财政年份:2021
- 资助金额:
$ 12.7万 - 项目类别:
Geometric Function Theory and Mathematical Physics
几何函数论与数学物理
- 批准号:
RGPIN-2019-04940 - 财政年份:2021
- 资助金额:
$ 12.7万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Geometric Function Theory in Several Complex Variables
职业:多个复变量的几何函数论
- 批准号:
2045104 - 财政年份:2021
- 资助金额:
$ 12.7万 - 项目类别:
Continuing Grant
Removability in Geometric Function Theory
几何函数理论中的可移性
- 批准号:
2050113 - 财政年份:2021
- 资助金额:
$ 12.7万 - 项目类别:
Standard Grant
Geometric Function Theory in Euclidean and Metric Spaces
欧几里得和度量空间中的几何函数理论
- 批准号:
2055171 - 财政年份:2021
- 资助金额:
$ 12.7万 - 项目类别:
Standard Grant