Limit distributions on homogeneous spaces: Interplay of dynamics and number theory
齐次空间上的极限分布:动力学与数论的相互作用
基本信息
- 批准号:1001654
- 负责人:
- 金额:$ 13.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In a wide variety of questions in number theory one often recognizes symmetries and invariance under group actions; and deep insights can be gained into such problems by understanding dynamics of subgroup actions on homogeneous spaces of Lie groups. In several such instances it is necessary to describe limiting distributions of sequences of translates of smooth measures on submanifolds of homogeneous spaces. Building up further from his earlier work on some typical cases, the principal investigator seeks in this project to develop new techniques in homogeneous dynamics to provide very general natural conditions on the manifolds and translating elements that lead to equidistribution of the limit measures. The work should lead to resolutions of some questions on metric properties of Diophantine approximation, counting integral and rational points on group varieties, and counting points on orbits of geometrically finite groups associated with certain geometric configurations. From a broader perspective, the research will apply the concepts and methods of ergodic theory and dynamical systems about the long-time behavior of a generic particle in a flow, which is originally a physical problem, to answer questions about deep properties of whole numbers. This conceptual bridge between two very different disciplines uses and influences other areas like representation theory, analysis, and differential geometry, not to mention physics.
在数论的各种问题中,人们经常认识到群作用下的对称性和不变性;通过理解李群齐次空间上子群作用的动力学,可以深入了解这些问题。在几个这样的情况下,有必要描述极限分布序列的平移光滑措施的子流形的齐次空间。进一步建立从他早期的工作在一些典型的情况下,主要研究人员在这个项目中寻求开发新技术在齐次动力学提供非常普遍的自然条件的流形和翻译元素,导致equidistribution的限制措施。这项工作应导致决议的一些问题的度量性质的丢番图逼近,计数积分和合理的点群品种,计数点轨道的几何有限群与某些几何配置。 从更广泛的角度来看,该研究将应用遍历理论和动力系统的概念和方法,关于流中一般粒子的长时间行为,这本来是一个物理问题,以回答有关整数的深层性质的问题。这两个非常不同的学科之间的概念桥梁使用和影响其他领域,如表示论,分析和微分几何,更不用说物理学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nimish Shah其他文献
On Hardware-Aware Probabilistic Frameworks for Resource Constrained Embedded Applications
资源受限嵌入式应用的硬件感知概率框架
- DOI:
10.1109/emc2-nips53020.2019.00023 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Laura Isabel Galindez Olascoaga;Wannes Meert;Nimish Shah;Guy Van den Broeck;M. Verhelst - 通讯作者:
M. Verhelst
TCT-432 Acute Left Ventricular Unloading and Delayed Coronary Reperfusion Promotes Stromal Cell Derived Factor-1 (SDF-1) Expression and Cardioprotective Signaling in Acute Myocardial Infarction
- DOI:
10.1016/j.jacc.2014.07.483 - 发表时间:
2014-09-16 - 期刊:
- 影响因子:
- 作者:
Navin K. Kapur;Vikram Paruchuri;Xiaoying Qiao;Kevin Morine;Wajih Syed;Sam Dow;Nimish Shah;Natesa Pandian;Richard H. Karas - 通讯作者:
Richard H. Karas
Analgesia for shock wave lithotripsy
- DOI:
10.1016/j.bjmsu.2010.04.001 - 发表时间:
2010-09-01 - 期刊:
- 影响因子:
- 作者:
George Yardy;Nimish Shah;Oliver Wiseman - 通讯作者:
Oliver Wiseman
Novel and Emerging Biomarkers with Risk Predictive Utility for Atherosclerotic Cardiovascular Disease
具有动脉粥样硬化性心血管疾病风险预测功能的新型和新兴生物标志物
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1.9
- 作者:
Nimish Shah;Anand Rohatgi - 通讯作者:
Anand Rohatgi
What Is a Zero-COVID Strategy and How Can It Help Us Minimise the Impact of the Pandemic ?
什么是零新冠病毒策略以及它如何帮助我们最大限度地减少大流行的影响?
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Laura Isabel Galindez Olascoaga;Wannes Meert;Nimish Shah;M. Verhelst - 通讯作者:
M. Verhelst
Nimish Shah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nimish Shah', 18)}}的其他基金
Aspects of Unipotent Dynamics on Homogenous Spaces
齐次空间上的单势动力学的各个方面
- 批准号:
1700394 - 财政年份:2017
- 资助金额:
$ 13.4万 - 项目类别:
Continuing Grant
Effective and sparse equidistribution problems on homogeneous spaces and linear dynamics of semisimple groups
齐次空间和半单群线性动力学的有效稀疏等分布问题
- 批准号:
1301715 - 财政年份:2013
- 资助金额:
$ 13.4万 - 项目类别:
Continuing Grant
相似海外基金
EMBRACE-AGS-Growth: Diagnosing Kinematic Processes Responsible for Precipitation Distributions in Tropical Cyclones
EMBRACE-AGS-Growth:诊断热带气旋降水分布的运动过程
- 批准号:
2409475 - 财政年份:2024
- 资助金额:
$ 13.4万 - 项目类别:
Standard Grant
Metallicity Distributions of the Faintest Dwarf Galaxies
最暗矮星系的金属丰度分布
- 批准号:
2307599 - 财政年份:2023
- 资助金额:
$ 13.4万 - 项目类别:
Standard Grant
Reasoning about Spatial Relations and Distributions: Supporting STEM Learning in Early Adolescence
空间关系和分布的推理:支持青春期早期的 STEM 学习
- 批准号:
2300937 - 财政年份:2023
- 资助金额:
$ 13.4万 - 项目类别:
Continuing Grant
Pooling INference and COmbining Distributions Exactly: A Bayesian approach (PINCODE)
准确地汇集推理和组合分布:贝叶斯方法 (PINCODE)
- 批准号:
EP/X027872/1 - 财政年份:2023
- 资助金额:
$ 13.4万 - 项目类别:
Research Grant
Pooling INference and COmbining Distributions Exactly: A Bayesian Approach (PINCODE)
池化推理和精确组合分布:贝叶斯方法 (PINCODE)
- 批准号:
EP/X028100/1 - 财政年份:2023
- 资助金额:
$ 13.4万 - 项目类别:
Research Grant
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 13.4万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 13.4万 - 项目类别:
Genetic analysis of the Robo3+ glycinergic amacrine cell
Robo3 甘氨酸无长突细胞的遗传分析
- 批准号:
10749795 - 财政年份:2023
- 资助金额:
$ 13.4万 - 项目类别:
Novel Computational Methods for Design Under Uncertainty with Arbitrary Dependent Probability Distributions
具有任意相关概率分布的不确定性设计的新颖计算方法
- 批准号:
2317172 - 财政年份:2023
- 资助金额:
$ 13.4万 - 项目类别:
Standard Grant