Aspects of Unipotent Dynamics on Homogenous Spaces
齐次空间上的单势动力学的各个方面
基本信息
- 批准号:1700394
- 负责人:
- 金额:$ 18.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many questions in number theory and geometry involve multiple infinite groups of symmetries in their structures. Exploring the interactions between these groups of symmetries using ideas from dynamical systems, applied to suitably created algebraic models, is at the core of mathematical work involved in this project. The primary goal of the project is to make new observations that relate, and to develop new techniques applicable for solving, a variety of dynamical, number theoretical, and geometrical problems. The work combines concepts from several different areas of mathematics, and it is anticipated that the project will build conceptual bridges between these different disciplines. Graduate students and post-doctoral researchers will participate in the research project, preparing them to work on some of the forefront areas of mathematics.The investigator and his graduate students will study a wide range of dynamical questions on unipotent flows on homogeneous spaces that arise from number theoretic or geometrical questions. The project investigates four types of problems: (1) Describe closures of unipotent orbits and totally geodesic immersions in infinite-volume geometrically-finite hyperbolic manifolds; (2) Control the non-divergence rate of unipotent trajectories or expanding translates of short unipotent curves under suitable Diophantine conditions on the base point; (3) Find geometric conditions under which expanding translates of a curve in a homogeneous space are uniformly distributed in the limit; (4) Compute Hausdorff dimensions of the sets of points with specified excursion rates for flows on non-compact homogeneous spaces. This study will combine techniques from various areas of mathematics, including dynamical systems, Lie groups, representation theory, algebraic geometry, probability theory, number theory, and combinatorics. The research aims to obtain new results and develop new techniques of dynamical, number theoretical, and combinatorial nature.
数论和几何中的许多问题都涉及到多个无限对称群的结构。利用动力学系统的思想探索这些对称群之间的相互作用,并将其应用于适当创建的代数模型,是该项目所涉及的数学工作的核心。该项目的主要目标是进行新的观察,并开发适用于解决各种动力学,数论和几何问题的新技术。这项工作结合了几个不同数学领域的概念,预计该项目将在这些不同学科之间建立概念桥梁。研究生和博士后研究人员将参与该研究项目,为他们在数学的一些前沿领域工作做好准备。研究员和他的研究生将研究一系列关于齐次空间上的幂幺流的动力学问题,这些问题来自数论或几何问题。本项目研究了四类问题:(1)描述无限体积几何有限双曲流形中幂幺轨道和全测地浸入的闭包;(2)在基点上适当的Diophantine条件下,控制幂幺轨线或幂幺短曲线的扩张平移的不发散率;(3)求齐次空间中曲线的展开平移在极限上均匀分布的几何条件;(4)计算非紧齐性空间上流的具有特定漂移率的点集的Hausdorff维数。这项研究将结合联合收割机技术从各个领域的数学,包括动力系统,李群,表示论,代数几何,概率论,数论和组合数学。该研究旨在获得新的结果,并开发动力学,数论和组合性质的新技术。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Equidistribution of curves in homogeneous spaces and Dirichlet's approximation theorem for matrices
- DOI:10.3934/dcds.2020227
- 发表时间:2016-06
- 期刊:
- 影响因子:0
- 作者:N. Shah;Lei Yang
- 通讯作者:N. Shah;Lei Yang
Primitive rational points on expanding horocycles in products of the modular surface with the torus
模曲面与环面乘积中展开四环的本原有理点
- DOI:10.1017/etds.2020.15
- 发表时间:2020
- 期刊:
- 影响因子:0.9
- 作者:EINSIEDLER, MANFRED;LUETHI, MANUEL;SHAH, NIMISH A.
- 通讯作者:SHAH, NIMISH A.
Equidistribution of dilated curves on nilmanifolds: EQUIDISTRIBUTION OF DILATED CURVES
尼尔流形上扩张曲线的等分布:EQUIDISTRIBUTION OF DILATED Curves
- DOI:10.1112/jlms.12156
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Kra, Bryna;Shah, Nimish A.;Sun, Wenbo
- 通讯作者:Sun, Wenbo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nimish Shah其他文献
On Hardware-Aware Probabilistic Frameworks for Resource Constrained Embedded Applications
资源受限嵌入式应用的硬件感知概率框架
- DOI:
10.1109/emc2-nips53020.2019.00023 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Laura Isabel Galindez Olascoaga;Wannes Meert;Nimish Shah;Guy Van den Broeck;M. Verhelst - 通讯作者:
M. Verhelst
TCT-432 Acute Left Ventricular Unloading and Delayed Coronary Reperfusion Promotes Stromal Cell Derived Factor-1 (SDF-1) Expression and Cardioprotective Signaling in Acute Myocardial Infarction
- DOI:
10.1016/j.jacc.2014.07.483 - 发表时间:
2014-09-16 - 期刊:
- 影响因子:
- 作者:
Navin K. Kapur;Vikram Paruchuri;Xiaoying Qiao;Kevin Morine;Wajih Syed;Sam Dow;Nimish Shah;Natesa Pandian;Richard H. Karas - 通讯作者:
Richard H. Karas
Analgesia for shock wave lithotripsy
- DOI:
10.1016/j.bjmsu.2010.04.001 - 发表时间:
2010-09-01 - 期刊:
- 影响因子:
- 作者:
George Yardy;Nimish Shah;Oliver Wiseman - 通讯作者:
Oliver Wiseman
Novel and Emerging Biomarkers with Risk Predictive Utility for Atherosclerotic Cardiovascular Disease
具有动脉粥样硬化性心血管疾病风险预测功能的新型和新兴生物标志物
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1.9
- 作者:
Nimish Shah;Anand Rohatgi - 通讯作者:
Anand Rohatgi
What Is a Zero-COVID Strategy and How Can It Help Us Minimise the Impact of the Pandemic ?
什么是零新冠病毒策略以及它如何帮助我们最大限度地减少大流行的影响?
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Laura Isabel Galindez Olascoaga;Wannes Meert;Nimish Shah;M. Verhelst - 通讯作者:
M. Verhelst
Nimish Shah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nimish Shah', 18)}}的其他基金
Effective and sparse equidistribution problems on homogeneous spaces and linear dynamics of semisimple groups
齐次空间和半单群线性动力学的有效稀疏等分布问题
- 批准号:
1301715 - 财政年份:2013
- 资助金额:
$ 18.4万 - 项目类别:
Continuing Grant
Limit distributions on homogeneous spaces: Interplay of dynamics and number theory
齐次空间上的极限分布:动力学与数论的相互作用
- 批准号:
1001654 - 财政年份:2010
- 资助金额:
$ 18.4万 - 项目类别:
Standard Grant
相似国自然基金
有限一般线性群的unipotent Specht模与Supercharacter理论
- 批准号:11601338
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Unipotent Representations and Associated Cycles
单能表示和相关循环
- 批准号:
2000254 - 财政年份:2020
- 资助金额:
$ 18.4万 - 项目类别:
Standard Grant
Affine space fibrations on affine algebraic varieties and unipotent group actions
仿射代数簇上的仿射空间纤维振动和单能群作用
- 批准号:
20K03570 - 财政年份:2020
- 资助金额:
$ 18.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Relative unipotent completion of fundamental groups of modular curves and non-commutative motives
模曲线基本群和非交换动机的相对单能完成
- 批准号:
18K13391 - 财政年份:2018
- 资助金额:
$ 18.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unipotent structure of higher dimensional algebraic varieties and automorphism groups
高维代数簇和自同构群的单能结构
- 批准号:
16K05115 - 财政年份:2016
- 资助金额:
$ 18.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic cycles and motives with modulus for unipotent algebraic groups
单能代数群的代数环和模动机
- 批准号:
16K17579 - 财政年份:2016
- 资助金额:
$ 18.4万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
On families of algebraic varieties admitting unipotent group actions from the viewpoint of Minimal Model Program
从最小模型程序的角度论承认单能群作用的代数簇族
- 批准号:
15K04805 - 财政年份:2015
- 资助金额:
$ 18.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of unipotent megakaryocyte progenitor and analysis of megakaryopoietic pathway
单能巨核祖细胞的鉴定及巨核细胞生成途径分析
- 批准号:
25860779 - 财政年份:2013
- 资助金额:
$ 18.4万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Structure of higher-dimensional algebraic varieties and unipotent geometry
高维代数簇的结构和单能几何
- 批准号:
24340006 - 财政年份:2012
- 资助金额:
$ 18.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Unipotent classes, nilpotent classes and representation theory of algebraic groups
代数群的单能类、幂零类和表示论
- 批准号:
EP/I033835/1 - 财政年份:2011
- 资助金额:
$ 18.4万 - 项目类别:
Research Grant