Integral representation of Langlands L functions
Langlands L 函数的积分表示
基本信息
- 批准号:1001792
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI plans to continue his work (joint with David Ginzburg) on integral representation of Langlands L functions with the study of several new examples which appear in exceptional groups. These include an integral representation of the adjoint L function of GL(5), and an extension of the so-called doubling method to the exceptional group G2. Langlands L functions are certain functions of a single complex variable which appear in the subject of automorphic forms, at the intersection of number theory and representation theory. The simplest example is the Riemann zeta function, which plays a crucial role in estimating the number of prime integers less than a given number. The next simplest examples are the Dirichlet L functions, which play a similar role in estimating the distribution of primes in an arithmetic progression. Other examples were defined using modular forms and elliptic curves, resulting in functions with properties nearly identical to these classical examples. In the last century it emerged that it was possible to study modular forms and elliptic curves from the point of view of representation theory, which is essentially the study of collections of linear operators acting on a vector space. At the same time, certain complex functions with nearly the same properties as the classical number theoretic functions discussed above arose naturally in representation theory. These are Langlands L functions. The main strategy for studying these functions is via integral representations. This means, simply, that one tries to take a function of two variables, one of which is complex, and integrate it over the other one. The result is a function of one complex variable, and one hopes that by setting everything up right one can arrange for it to be a Langlands L function. To date, no one really knows exactly what it takes for this to work out, although a number of useful heuristics have been suggested. The PI wishes to continue his study of this intriguing phenomenon.
The PI plans to continue his work (joint with David Ginzburg) on integral representation of Langlands L functions with the study of several new examples which appear in exceptional groups. These include an integral representation of the adjoint L function of GL(5), and an extension of the so-called doubling method to the exceptional group G2. Langlands L functions are certain functions of a single complex variable which appear in the subject of automorphic forms, at the intersection of number theory and representation theory. The simplest example is the Riemann zeta function, which plays a crucial role in estimating the number of prime integers less than a given number. The next simplest examples are the Dirichlet L functions, which play a similar role in estimating the distribution of primes in an arithmetic progression. Other examples were defined using modular forms and elliptic curves, resulting in functions with properties nearly identical to these classical examples. In the last century it emerged that it was possible to study modular forms and elliptic curves from the point of view of representation theory, which is essentially the study of collections of linear operators acting on a vector space. At the same time, certain complex functions with nearly the same properties as the classical number theoretic functions discussed above arose naturally in representation theory. These are Langlands L functions. The main strategy for studying these functions is via integral representations. This means, simply, that one tries to take a function of two variables, one of which is complex, and integrate it over the other one. The result is a function of one complex variable, and one hopes that by setting everything up right one can arrange for it to be a Langlands L function. To date, no one really knows exactly what it takes for this to work out, although a number of useful heuristics have been suggested. The PI wishes to continue his study of this intriguing phenomenon.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Hundley其他文献
Descent Construction for GSpin Groups
GSpin 组的下降构造
- DOI:
10.1090/memo/1148 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Joseph Hundley;E. Sayag - 通讯作者:
E. Sayag
A doubling integral for G2
G2 的二倍积分
- DOI:
10.1007/s11856-015-1164-x - 发表时间:
2012 - 期刊:
- 影响因子:1
- 作者:
D. Ginzburg;Joseph Hundley - 通讯作者:
Joseph Hundley
Fourier expansions of GL(2) newforms at various cusps
GL(2) 新形式在不同尖点的傅里叶展开
- DOI:
10.1007/s11139-012-9411-9 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
D. Goldfeld;Joseph Hundley;Min Lee - 通讯作者:
Min Lee
DESCENT CONSTRUCTION FOR GSPIN GROUPS – ODD CASE
GSPIN 组的下降结构 – 奇怪的情况
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Joseph Hundley;E. Sayag - 通讯作者:
E. Sayag
Adjoint L-function for GL(3) and U(2,1)
- DOI:
doi:10.1093/imrn/rnz125 - 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Joseph Hundley;Qing Zhang - 通讯作者:
Qing Zhang
Joseph Hundley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Hundley', 18)}}的其他基金
Upstate New York Number Theory Conference
纽约州北部数论会议
- 批准号:
1507126 - 财政年份:2015
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
相似国自然基金
稀疏表示及其在盲源分离中的应用研究
- 批准号:61104053
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
约化群GL(n, F)的表示--F是非阿基米德局部域
- 批准号:10701034
- 批准年份:2007
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
信号盲处理的稀疏表示方法
- 批准号:60475004
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Local Geometric Langlands Correspondence and Representation Theory
局部几何朗兰兹对应与表示理论
- 批准号:
2416129 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Geometric Methods in Representation Theory and the Langlands Program
表示论中的几何方法和朗兰兹纲领
- 批准号:
2101837 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Local Geometric Langlands Correspondence and Representation Theory
局部几何朗兰兹对应与表示理论
- 批准号:
2101984 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Arc Spaces in the Langlands Program and Geometric Representation Theory
朗兰兹纲领和几何表示理论中的弧空间
- 批准号:
1601934 - 财政年份:2016
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Modular Representation Theory and Geometric Langlands Duality
模表示论与几何朗兰兹对偶
- 批准号:
1500890 - 财政年份:2015
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Geometric methods in representation theory and the Langlands program
表示论中的几何方法和朗兰兹纲领
- 批准号:
DP150103525 - 财政年份:2015
- 资助金额:
$ 12万 - 项目类别:
Discovery Projects
Geometry, Representation theory, and Langlands duality
几何、表示论和朗兰兹对偶
- 批准号:
1402928 - 财政年份:2014
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
p-adic representation theory and the p-adic Langlands program
p-adic 表示理论和 p-adic Langlands 纲领
- 批准号:
232279234 - 财政年份:2013
- 资助金额:
$ 12万 - 项目类别:
Heisenberg Fellowships
Geometry, Representation theory, and the Langlands program
几何、表示论和朗兰兹纲领
- 批准号:
1069316 - 财政年份:2011
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Langlands duality and representation theory at the Hebrew university of Jerusalem
耶路撒冷希伯来大学的朗兰兹对偶和表示理论
- 批准号:
401392-2010 - 财政年份:2010
- 资助金额:
$ 12万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements