Cyclic Polymers: Topological Effects on Structure, Dynamics and Function

环状聚合物:拓扑对结构、动力学和功能的影响

基本信息

  • 批准号:
    1001903
  • 负责人:
  • 金额:
    $ 38.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-04-15 至 2013-11-30
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY:Macromolecules are ubiquitous in modern technologies. Cyclic macromolecules have fascinated chemists, biologists and materials scientists for decades. While the properties of linear macromolecules are reasonably well understood, the properties of cyclic macromolecules remain mysterious. Constraining a large macromolecule into a ring has a significant influence its structure, dynamics and properties. Our ability to exploit these novel properties to generate new classes of materials is constrained both by our understanding and our inability to generate high molecular weight cyclic polymers with well defined structures in high purity. An innovative zwitterionic ring-expansion polymerization of lactones was discovered that provides an expedient synthesis of high molecular weight cyclic polyesters of well-defined molecular weight and narrow molecular weight distribution. This new synthetic strategy is fast, scalable and enables the generation of crystalline cyclic polyesters that span molecular weights where chain-entanglements begin to dominate their properties. Our experimental approach combines mechanistic studies of polymerization reactions with physical, rheological and spectroscopic investigations (wide- and small-angle X-ray and neutron scattering) to illuminate the role of molecular topology on macromolecular conformation, dynamics and properties. The gaps in our fundamental understanding of one of the simplest topological isomers of linear macromolecules are specific targets of the proposed studies. The experimental plan is designed to provide new knowledge to fill these gaps and to apply this knowledge for the development of new classes of high-performance thermoplastics, elastomers, and smart rheological fluids. While the focus is cyclic polyesters, the fundamental insights derived should be generalizable to any cyclic macromolecule, highlighting the broader intellectual impacts of the proposed studies NON-TECHNICAL SUMMARY: Plastics are ubiquitous modern materials, which impact every facet of our lives. Most plastics are derived from linear polymers, long linear chain macromolecules whose properties are reasonably well-understood. In contrast, cyclic polymers, large macromolecules closed into a ring exhibit unusual properties quite different from their linear analogs, but these differences are not well-understood. Our ability to exploit these novel properties to generate new classes of materials is limited both by our understanding and our inability to generate high molecular weight cyclic polymers with well defined structures in high purity. A new synthetic technique was developed that provides a means of generating cyclic polyesters. This new method will enable the preparation of new classes of well-defined cyclic polymers to investigate their properties and possible applications as new classes of polymeric materials. Studies will address how cyclic polymers crystallize into hard thermoplastics, how they flow when melted, and how the simple fact that their ends are connected into a ring changes their behavior. That so little is known about cyclic polymers implies that our understanding of polymers is far less sophisticated than previously imagined. That is, if connecting the ends of a large linear molecule changes its properties in ways that can't be explained, can it be said that we understand these large molecules? A major impact of the proposed studies will be new scientific understanding on the behavior of macromolecules constrained in rings and the degree to which these new insights challenge and augment our current understanding of macromolecular behavior. As new insights emerge, the novel properties of cyclic polymers can be harnessed to create new families of materials. Collaborative efforts with industrial scientists at IBM, physical scientists at NIST, and chemical engineers at Stanford will provide a unique training environment for the next generation of scientists who are able to make new classes of materials, study their properties and use these insights to generate new classes of polymeric materials.
技术概述:大分子在现代技术中无处不在。 几十年来,环状大分子一直吸引着化学家、生物学家和材料科学家。 虽然线性大分子的性质是合理的理解,环状大分子的性质仍然是神秘的。 将大分子约束成环对大分子的结构、动力学和性能有着重要的影响。我们利用这些新特性来产生新材料类别的能力受到我们的理解和我们无法产生具有高纯度的明确结构的高分子量环状聚合物的限制。 发现了一种新颖的内酯的两性离子扩环聚合,其提供了具有明确分子量和窄分子量分布的高分子量环状聚酯的有利合成。 这种新的合成策略是快速的、可扩展的,并且使得能够产生跨越分子量的结晶环状聚酯,其中链缠结开始主导其性质。 我们的实验方法将聚合反应的机理研究与物理,流变学和光谱研究(宽角和小角X射线和中子散射)相结合,以阐明分子拓扑结构对大分子构象,动力学和性能的作用。 我们对线性大分子最简单的拓扑异构体之一的基本理解的差距是拟议研究的具体目标。 该实验计划旨在提供新的知识来填补这些空白,并将这些知识应用于开发新型高性能热塑性塑料,弹性体和智能流变液。虽然重点是环状聚酯,但所得出的基本见解应可推广到任何环状大分子,突出了拟议研究的更广泛的知识影响非技术摘要:塑料是无处不在的现代材料,影响着我们生活的方方面面。 大多数塑料都来自线性聚合物,长线性链大分子,其性质相当好理解。 相比之下,环状聚合物,大的大分子封闭成一个环,表现出不寻常的性质,完全不同于他们的线性类似物,但这些差异还没有得到很好的理解。 我们利用这些新特性来产生新材料类别的能力受到我们的理解和我们不能产生具有高纯度的明确结构的高分子量环状聚合物的限制。开发了一种新的合成技术,提供了一种生成环状聚酯的方法。 这种新的方法将使新类别的定义明确的环状聚合物的制备,以研究它们的性能和可能的应用,作为新类别的聚合物材料。 研究将解决环状聚合物如何结晶成硬热塑性塑料,它们在熔融时如何流动,以及它们的末端连接成环的简单事实如何改变它们的行为。 我们对环状聚合物知之甚少,这意味着我们对聚合物的理解远没有以前想象的那么复杂。 也就是说,如果连接一个大的线性分子的两端以无法解释的方式改变了它的性质,那么我们能说我们理解这些大分子吗? 拟议研究的一个主要影响将是对环中限制的大分子行为的新的科学理解,以及这些新见解挑战和增强我们目前对大分子行为的理解的程度。 随着新的见解的出现,环状聚合物的新特性可以用来创造新的材料家族。 与IBM的工业科学家,NIST的物理科学家和斯坦福大学的化学工程师的合作努力将为下一代科学家提供独特的培训环境,他们能够制造新的材料类别,研究它们的特性并利用这些见解来生成新的聚合物材料类别。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Waymouth其他文献

Robert Waymouth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Waymouth', 18)}}的其他基金

CAS: New Strategies for Electrocatalytic Reactions with Transition-Metal Hydrides
CAS:过渡金属氢化物电催化反应的新策略
  • 批准号:
    2101256
  • 财政年份:
    2021
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
GOALI: CAS: Organocatalytic Reactions and Processes for Polymer Chemistry
目标:CAS:高分子化学的有机催化反应和过程
  • 批准号:
    2002933
  • 财政年份:
    2020
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
New Approaches to Reversible Homogeneous Electrocatalysts
可逆均相电催化剂的新方法
  • 批准号:
    1565947
  • 财政年份:
    2016
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
GOALI: SusChem: Organocatalysis: A Platform for Sustainable Polymer Chemistry
目标:SusChem:有机催化:可持续聚合物化学平台
  • 批准号:
    1607092
  • 财政年份:
    2016
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
Materials from High Molecular Weight Cyclic Polymers: Insights on Properties and Dynamics
高分子量环状聚合物材料:对性能和动力学的见解
  • 批准号:
    1407658
  • 财政年份:
    2014
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
GOALI, SusChem: Organocatalysis for Sustainable Polymer Chemistry
GOALI、SusChem:可持续聚合物化学的有机催化
  • 批准号:
    1306730
  • 财政年份:
    2013
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
Transfer Hydrogenation: A Paradigm for Reversible Electrocatalysts
转移氢化:可逆电催化剂的范例
  • 批准号:
    1213403
  • 财政年份:
    2012
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
GOALI: Organocatalytic Polymerization: New Synthetic Methods for Polymer Chemistry
目标:有机催化聚合:高分子化学的新合成方法
  • 批准号:
    0957386
  • 财政年份:
    2010
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
Can Catalysts Dance? Catalytic Choreography in Olefin Polymerization
催化剂能跳舞吗?
  • 批准号:
    0910729
  • 财政年份:
    2009
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
GOALI: Macromolecular Design with Organocatalysis
目标:有机催化大分子设计
  • 批准号:
    0645891
  • 财政年份:
    2007
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant

相似海外基金

Development of self-healing semiconducting polymers by three-dimensional topological control
通过三维拓扑控制开发自修复半导体聚合物
  • 批准号:
    21KK0251
  • 财政年份:
    2022
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Synthesis of topological helical polymers by precise polymerization and their characterization
拓扑螺旋聚合物的精确聚合合成及其表征
  • 批准号:
    21K04685
  • 财政年份:
    2021
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of removable adhesive technology based on photo- and sound-triggered topological transformation of polymers
基于光和声触发聚合物拓扑转变的可移除粘合剂技术的开发
  • 批准号:
    21H01632
  • 财政年份:
    2021
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
RUI: Computational Methods for Measuring Topological Entanglement in Polymers
RUI:测量聚合物中拓扑纠缠的计算方法
  • 批准号:
    1913180
  • 财政年份:
    2019
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
Effects of addition of topological molecules on crystallization of polymers
拓扑分子的添加对聚合物结晶的影响
  • 批准号:
    15K05634
  • 财政年份:
    2015
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Crystallization control for constructing functional structures in polymers: flow-acceleration and topological restrictions in polymer crystallization
用于构建聚合物功能结构的结晶控制:聚合物结晶中的流动加速和拓扑限制
  • 批准号:
    15K05631
  • 财政年份:
    2015
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications of topological polymers to soft materials
拓扑聚合物在软材料中的应用
  • 批准号:
    15K13703
  • 财政年份:
    2015
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Synthesis of fully conjugated topological polymers and their characterization
全共轭拓扑聚合物的合成及其表征
  • 批准号:
    24750116
  • 财政年份:
    2012
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Topological Constraint in Ring Polymers Studied by Monte Carlo Simulation
蒙特卡罗模拟研究环状聚合物的拓扑约束
  • 批准号:
    22740281
  • 财政年份:
    2010
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Topological Mechanism of Nucleation of Polymers
聚合物成核的拓扑机制
  • 批准号:
    12127205
  • 财政年份:
    2000
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了