Problems in the Mathematical Theory of Water Waves
水波数学理论问题
基本信息
- 批准号:1002854
- 负责人:
- 金额:$ 4.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-01 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Three aspects in the mathematical theory of free surface water waves are being studied. The first aspect is the existence of traveling waves and their qualitative properties. Topological degree theory and the global bifurcation theorem will be refined to adapt to non-compact and singular operators and employed to construct periodic and solitary traveling water waves of large amplitude for a general class of vorticity. The existence of Stokes waves of extremal form and their geometric properties will be established. The second aspect is the Cauchy problem for water waves. This problem will be viewed as a system of nonlinear dispersive partial differential equations, and a priori estimates for long-time behavior of solutions will be obtained. The third aspect is the hydrodynamic stability of equilibria of water waves. A sharp criterion for linearized instablility will be obtained for a general class of free-surface gravity shear flows and small-amplitude rotational Stokes waves of finite depth. Stability and instability of other free-surface Euler equations such as generalized vortex patches will be established.Water waves are a prime example of applied mathematics describing wave motions of the kind which may be observed in the ocean, ranging in size from ripples to tsunamis or freak (rogue) waves. Nonlinearities characteristic of the mathematical problem for water waves demonstrate diverse behaviors such as rollup or breakdown, and they pose great challenges in mathematical analysis as well as engineering studies of ocean currents and the atmosphere. A key objective of the proposed research is to develop new methodologies and mathematical theories in the rigorous analysis of the mathematical problem which models free-surface water waves. Results from the proposed project will enhance our understanding of the dynamics of the ocean wave currents, and they will help engineering designs and numerical simulations. Mathematical advances obtained here will be useful in the analysis of other free-surface problems arising in the study of vortex motions, which are of potential importance in climate studies and phase transitions in material science.
自由表面水波数学理论的三个方面正在研究。 第一个方面是行波的存在及其定性特性。 拓扑度理论和全局分岔定理将被改进以适应非紧和奇异算子,并用于构造一般类涡度的大振幅周期性和孤立行水波。 极值形式斯托克斯波的存在及其几何性质将得到证实。 第二个方面是水波的柯西问题。 该问题将被视为非线性色散偏微分方程组,并且将获得解的长期行为的先验估计。 第三个方面是水波平衡的水动力稳定性。 对于一般类型的自由表面重力剪切流和有限深度的小振幅旋转斯托克斯波,将获得线性化不稳定性的尖锐准则。 将建立其他自由表面欧拉方程(例如广义涡斑)的稳定性和不稳定性。水波是应用数学的一个主要例子,描述了可以在海洋中观察到的波浪运动,其大小范围从涟漪到海啸或反常(流氓)波。水波数学问题的非线性特征表现出不同的行为,例如卷起或分解,它们对数学分析以及洋流和大气的工程研究提出了巨大的挑战。拟议研究的一个关键目标是开发新的方法和数学理论,以严格分析模拟自由表面水波的数学问题。该项目的结果将增强我们对海浪动力学的理解,并将有助于工程设计和数值模拟。这里获得的数学进展将有助于分析涡运动研究中出现的其他自由表面问题,这对于气候研究和材料科学中的相变具有潜在的重要性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vera Mikyoung Hur其他文献
Asymptotic stability of sharp fronts: Analysis and rigorous computation
尖锐前沿的渐近稳定性:分析与严格计算
- DOI:
10.1016/j.jde.2025.113550 - 发表时间:
2025-11-05 - 期刊:
- 影响因子:2.300
- 作者:
Blake Barker;Jared C. Bronski;Vera Mikyoung Hur;Zhao Yang - 通讯作者:
Zhao Yang
Erratum to: Unstable Surface Waves in Running Water
- DOI:
10.1007/s00220-013-1660-y - 发表时间:
2013-02-06 - 期刊:
- 影响因子:2.600
- 作者:
Vera Mikyoung Hur;Zhiwu Lin - 通讯作者:
Zhiwu Lin
Unstable Surface Waves in Running Water
- DOI:
10.1007/s00220-008-0505-6 - 发表时间:
2008-05-15 - 期刊:
- 影响因子:2.600
- 作者:
Vera Mikyoung Hur;Zhiwu Lin - 通讯作者:
Zhiwu Lin
Vera Mikyoung Hur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vera Mikyoung Hur', 18)}}的其他基金
Midwest Women in Mathematics Symposium
中西部女性数学研讨会
- 批准号:
1565670 - 财政年份:2016
- 资助金额:
$ 4.31万 - 项目类别:
Standard Grant
CAREER: Analysis of Surface Water Waves
职业:地表水波分析
- 批准号:
1352597 - 财政年份:2014
- 资助金额:
$ 4.31万 - 项目类别:
Continuing Grant
Mathematical aspects of surface water waves
表面水波的数学方面
- 批准号:
1008885 - 财政年份:2010
- 资助金额:
$ 4.31万 - 项目类别:
Standard Grant
Problems in the Mathematical Theory of Water Waves
水波数学理论问题
- 批准号:
0707647 - 财政年份:2007
- 资助金额:
$ 4.31万 - 项目类别:
Standard Grant
相似海外基金
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
- 批准号:
RGPIN-2019-04830 - 财政年份:2022
- 资助金额:
$ 4.31万 - 项目类别:
Discovery Grants Program - Individual
Mathematical problems in quantum entanglement theory
量子纠缠理论中的数学问题
- 批准号:
571742-2022 - 财政年份:2022
- 资助金额:
$ 4.31万 - 项目类别:
University Undergraduate Student Research Awards
Mathematical problems in collisionless kinetic theory.
无碰撞动力学理论中的数学问题。
- 批准号:
2620319 - 财政年份:2021
- 资助金额:
$ 4.31万 - 项目类别:
Studentship
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
- 批准号:
RGPIN-2019-04830 - 财政年份:2021
- 资助金额:
$ 4.31万 - 项目类别:
Discovery Grants Program - Individual
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
- 批准号:
RGPIN-2019-04830 - 财政年份:2020
- 资助金额:
$ 4.31万 - 项目类别:
Discovery Grants Program - Individual
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
- 批准号:
RGPIN-2019-04830 - 财政年份:2019
- 资助金额:
$ 4.31万 - 项目类别:
Discovery Grants Program - Individual
Mathematical problems in quantum field theory and infinite dimensional analysis
量子场论和无限维分析中的数学问题
- 批准号:
15K04888 - 财政年份:2015
- 资助金额:
$ 4.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Problems of Geophysical Fluid Mechanics: Uncertainties, Modeling, Theory, and Computing
地球物理流体力学的数学问题:不确定性、建模、理论和计算
- 批准号:
1510249 - 财政年份:2015
- 资助金额:
$ 4.31万 - 项目类别:
Standard Grant
Applications of Number Theory and Probability in problems in Mathematical Physics
数论和概率在数学物理问题中的应用
- 批准号:
EP/J004529/2 - 财政年份:2013
- 资助金额:
$ 4.31万 - 项目类别:
Research Grant
Applications of Number Theory and Probability in problems in Mathematical Physics
数论和概率在数学物理问题中的应用
- 批准号:
EP/J004529/1 - 财政年份:2011
- 资助金额:
$ 4.31万 - 项目类别:
Research Grant